阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

FEATURES

Single 14-/16-bit DAC, 1 LSB INL
Power-on reset to midscale or zero scale
Guaranteed monotonic by design
3 power-down functions
Low power serial interface with Schmitt-triggered inputs
Small 8-lead SOT-23 package, low power
Fast settling time of $4 \mu \mathrm{~s}$ typically
2.7 V to 5.5 V power supply

Low glitch on power-up
$\overline{\text { SYNC interrupt facility }}$

APPLICATIONS

Process control

Data acquisition systems
Portable battery-powered instruments
Digital gain and offset adjustment
Programmable voltage and current sources
Programmable attenuators

GENERAL DESCRIPTION

The AD5040 and the AD5060, members of the ADI nanoDAC family, are low power, single 14-/16-bit buffered voltage-out DACs that operate from a single 2.7 V to 5.5 V supply. The AD5040/AD5060 parts offer a relative accuracy specification of ± 1 LSB and operation are guaranteed monotonic with a ± 1 LSB DNL specification. The parts use a versatile 3-wire serial interface that operates at clock rates up to 30 MHz and is compatible with standard SPI ${ }^{*}$, QSPI ${ }^{\text {w }}$, MICROWIRE ${ }^{\text {me }}$, and DSP interface standards. The reference for both the AD5040 and AD5060 is supplied from an external $V_{\text {ref }}$ pin. A reference buffer is also provided on-chip. The AD5060 incorporates a power-on reset circuit that ensures the DAC output powers up to midscale or zero scale and remains there until a valid write takes place to the device. The AD5040 and the AD5060 both contain a power-down feature that reduces the current consumption of the device to typically 330 nA at 5 V and provides software-selectable output loads while in power-down mode. The parts are put into power-down mode over the serial interface. Total unadjusted error for the parts is $<2 \mathrm{mV}$. Both parts exhibit very low glitch on power-up.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. Available in a small, 8-lead SOT-23 package.
2. 14-/16-bit accurate, 1 LSB INL.
3. Low glitch on power-up.
4. High speed serial interface with clock speeds up to 30 MHz .
5. Three power-down modes available to the user.
6. Reset to known output voltage (midscale, zero scale).

Table 1. Related Devices

Part No.	Description
AD5061	2.7 V to $5.5 \mathrm{~V}, 16$-bit nanoDAC D/A, 4 LSB INL, SOT-23
AD5062	2.7 V to 5.5 V , 16-bit nanoDAC D/A, 1 LSB INL, SOT-23
AD5063	2.7 V to 5.5 V , 16-bit nanoDAC D/A, 1 LSB INL, MSOP

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com Fax: 781.461.3113 © 2005-2010 Analog Devices, Inc. All rights reserved.

AD5040/AD5060

TABLE OF CONTENTS

\qquadApplications 1
General Description 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
Specifications 3
Timing Characteristics 5
Absolute Maximum Ratings 6
ESD Caution6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 8
Terminology 14
Theory of Operation 15
DAC Architecture 15
REVISION HISTORY
1/10—Rev. 0 to Rev. A
Changes to Table 2, Relative Accuracy (INL) and Endnote 1 3
Updated Outline Dimensions 21
Changes to Ordering Guide 21
10/05-Revision 0: Initial Version
Reference Buffer 15
Serial Interface 15
Power-On reset 16
Software Reset 16
Power-Down Modes 17
Microprocessor Interfacing. 17
Applications 19
Choosing a Reference for the AD5040/ AD5060 19
Bipolar Operation Using the AD5040/ AD5060. 19
Using the AD5040/AD5060 with a Galvanically Isolated Interface Chip 20
Power Supply Bypassing and Grounding. 20
Outline Dimensions 21
Ordering Guide 21

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V} @ \mathrm{R}_{\mathrm{L}}=$ unloaded, $\mathrm{C}_{\mathrm{L}}=$ unloaded; $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

	A, B, and Y Grades ${ }^{1}$			
Min	Typ	Max	Unit	Test Conditions/Comments

AD5040/AD5060

Parameter	A, B, and Y Grades ${ }^{1}$			Unit	Test Conditions/Comments
	Min	Typ	Max		
Wideband Spurious-Free Dynamic Range (SFDR)		-67		db	Output frequency $=10 \mathrm{kHz}$
REFERENCE INPUT/OUTPUT $V_{\text {REF }}$ Input Range ${ }^{5}$ Input Current (Power-Down) Input Current (Normal) DC Input Impedance	2	± 0.1 1	$V_{D D}-50$ ± 0.5	mV $\mu \mathrm{A}$ $\mu \mathrm{A}$ $M \Omega$	Zero scale loaded
LOGIC INPUTS Input Current ${ }^{6}$ VIL, Input Low Voltage V_{H}, Input High Voltage Pin Capacitance	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	± 1 4	$\begin{gathered} \pm 2 \\ 0.8 \\ 0.8 \end{gathered}$	$\mu \mathrm{A}$ V V pF	$\begin{aligned} & V_{D D}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS VD lod (Normal Mode) $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ Idd (All Power-Down Modes) $V_{D D}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$	2.7	1.0 0.82 0.33 0.065	5.5 1.2 1.0 1	V mA $\mu \mathrm{A}$	All digital inputs at 0 V or V_{DD} DAC active and excluding load current $\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { and } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V}, \text { code }=\text { midscale } \\ \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}} \text { and } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ \mathrm{~V}_{\text {REF }}=2.7 \mathrm{~V}, \text { code }=\text { midscale } \end{gathered}$ $\begin{gathered} \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \text { and } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V}, \text { code }=\text { midscale } \\ \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \text { and } \mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{REF}}=4.096 \mathrm{~V} \text {, code }=\text { midscale } \end{gathered}$

[^0]
TIMING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V ; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 3.

Parameter	Limit ${ }^{1}$	Unit	Test Conditions/Comments
$\mathrm{t}_{1}{ }^{2}$	33	ns min	SCLK cycle time
t_{2}	5	ns min	SCLK high time
t_{3}	3	ns min	SCLK low time
t_{4}	10	ns min	$\overline{\text { SYNC }}$ to SCLK falling edge setup time
t_{5}	3	ns min	Data setup time
t_{6}	2	ns min	Data hold time
t_{7}	0	$n s$ min	SCLK falling edge to $\overline{\text { SYNC }}$ rising edge
t_{8}	12	$n s$ min	Minimum $\overline{\text { SYNC }}$ high time
t_{9}	9	ns min	$\overline{\text { SYNC }}$ rising edge to next SCLK fall ignore

[^1]

Figure 2. AD5060 Timing Diagram

AD5040/AD5060

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
$V_{\text {DD }}$ to GND	-0.3 V to +7.0 V
Digital Input Voltage to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Vout to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\text {REF }}$ to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range	
\quad Industrial (A, B Grade)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\quad Extended Automotive Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
\quad Range (Y Grade)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$150^{\circ} \mathrm{C}$
Maximum Junction Temperature	
SOT-23 Package	$\left(\mathrm{T}_{\mathrm{J}} \mathrm{max}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$
\quad Power Dissipation	$206^{\circ} \mathrm{C} / \mathrm{W}$
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$91^{\circ} \mathrm{C} / \mathrm{W}$
$\quad \theta_{\mathrm{JC}}$ Thermal Impedance	
Reflow Soldering (Pb-free)	$260^{\circ} \mathrm{C}$
\quad Peak Temperature	10 sec to 40 sec
\quad Time-at-Peak Temperature	1.5 kV
ESD (AD5040/AD5060)	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device is a high performance integrated circuit with an ESD rating of $<2 \mathrm{kV}$. It is ESD sensitive. Proper precautions should be taken for handling and assembly.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	DIN	Serial Data Input. These parts have a 16-/24-bit shift register. Data is clocked into the register on the falling edge of the serial clock input. Power Supply Input. These parts can be operated from 2.7 V to 5.5 V and V_{DD} should be decoupled to GND. 3
4	$V_{\text {DD }}$	$V_{\text {REF }}$
5	Vout	
6	AGND	Analog Output Voltage from DAC. Ground Reference Point for Analog Circuitry. GACGND Ground Input to the DAC Core. Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it enables the input shift register and data is transferred in on the falling edges of the following clocks. The DAC is updated following the 16th/24th clock cycle unless $\overline{\text { SYNC is taken high before this edge, in which case }}$ the rising edge of $\overline{\text { SYNC acts as an interrupt, and the write sequence is ignored by the DAC. }}$Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates up to 30 MHz.

AD5040/AD5060

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical AD5060 INL Plot

Figure 5. Typical AD5060 DNL Plot

Figure 6. Typical AD5060 TUE Plot

Figure 7. Typical AD5040 INL Plot

Figure 8. Typical AD5040 DNL Plot

Figure 9. Typical AD5040 TUE Plot

Figure 10. INL vs. Reference Input Voltage ${ }^{1}$

Figure 11. DNL vs. Reference Input Voltage ${ }^{1}$

Figure 12. TUE vs. Reference Input Voltage ${ }^{1}$

Figure 13. Typical Offset Error vs. Temperature ${ }^{1}$

Figure 14. Typical Gain Error vs. Temperature ${ }^{1}$

Figure 15. Typical INL Error vs. Temperature ${ }^{1}$
${ }^{1}$ AD5060 only.

AD5040/AD5060

Figure 16. Typical DNL Error vs. Temperature ${ }^{1}$

Figure 17. Typical TUE Error vs. Temperature ${ }^{1}$

Figure 18. Typical Supply Current vs. Temperature ${ }^{1}$

Figure 19. Typical Supply Current vs. Frequency @ $5.5 \mathrm{~V}^{1}$

Figure 20. Typical Supply Current vs. Frequency @ 3 V ${ }^{1}$

Figure 21. Typical Supply Current vs. Supply Voltage ${ }^{1}$
${ }^{1}$ AD5060 only.

Figure 22. Typical Supply Current vs. Digital Input Code ${ }^{1}$

Figure 23. AD5060 Digital-to-Analog Glitch Impulse
(See Figure 24)

Figure 24. AD5060 Digital-to-Analog Glitch Energy

Figure 25. 0.1 Hz to 10 Hz Noise Plot

Figure 26. $V_{D D}$ Headroom vs. Reference Voltage

Figure 27. Output Voltage vs. Reference Voltage
${ }^{1}$ AD5060 only.

Figure 28. Typical Output vs. Supply Voltage

CH1 2VIDIV CH2 2VIDIV CH3 2 V TIME BASE $=5.00 \mu \mathrm{~s}$

Figure 29. Time to Exit Power-Down to Midscale

Figure 30. Noise Spectral Density

Figure 31. Glitch upon Entering Software Power-Down to Zero Scale

Figure 32. Glitch upon Exiting Software Power-Down to Zero Scale

Figure 33. Glitch upon Entering Hardware Power-Down to Three-State

Figure 34. Glitch upon Exiting Hardware Power-Down to Zero Scale

Figure 35. Typical Output Load Regulation

Figure 36. Typical Current Limiting Plot

Figure 37. Typical Output Slew Rate

Figure 38. $I_{D D}$ Histogram $V_{D D}=3.0 \mathrm{~V}$

Figure 39. $I_{D D}$ Histogram $V_{D D}=5.0 \mathrm{~V}$

AD5040/AD5060

TERMINOLOGY

Relative Accuracy

For the DAC, relative accuracy or integral nonlinearity (INL) is a measure of the maximum deviation, in LSBs, from a straight line passing through the endpoints of the DAC transfer function. A typical AD5060 INL vs. code plot is shown in Figure 4.

Differential Nonlinearity (DNL)

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB maximum ensures monotonicity. This DAC is guaranteed monotonic by design. A typical AD5060 DNL vs. code plot is shown in Figure 5.

Offset Error

Offset error is a measure of the output error when zero code (0x0000) is loaded to the DAC register. Ideally, the output should be 0 V . The zero-code error is always positive in the AD5040/AD5060 because the output of the DAC cannot go below 0 V . This is due to a combination of the offset errors in the DAC and output amplifier. Zero-code error is expressed in mV .

Full-Scale Error

Full-scale error is a measure of the output error when full-scale code (0xFFFF AD5060, 0x3FFF AD5040) is loaded to the DAC register. Ideally, the output should be $\mathrm{V}_{\mathrm{DD}}-1$ LSB. Full-scale error is expressed in percent of full-scale range.

Gain Error

This is a measure of the span error of the DAC. It is the deviation in slope of the DAC transfer characteristic from ideal, expressed as a percent of the full-scale range.

Total Unadjusted Error (TUE)

Total unadjusted error is a measure of the output error taking all the various errors into account. A typical AD5060 TUE vs. code plot is shown in Figure 6.

Offset Error Drift

This is a measure of the change in zero-code error with a change in temperature. It is expressed in $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$.

Gain Error Drift

This is a measure of the change in gain error with changes in temperature. It is expressed in (ppm of full-scale range) $/{ }^{\circ} \mathrm{C}$.

Digital-to-Analog Glitch Impulse

Digital-to-analog glitch impulse is the impulse injected into the analog output when the input code in the DAC register changes state. It is normally specified as the area of the glitch in nV-s and is measured when the digital input code is changed by 1 LSB at the worst case code 53786; see Figure 23 and Figure 24. The expanded view in Figure 23 shows the glitch generated following completion of the calibration routine; Figure 24 zooms in on this glitch.

Digital Feedthrough

Digital feedthrough is a measure of the impulse injected into the analog output of the DAC from the digital inputs of the DAC, but is measured when the DAC output is not updated. It is specified in nV -s and measured with a full-scale code change on the data bus-that is, from all 0 s to all 1 s , and vice versa.

THEORY OF OPERATION

The AD5040/AD5060 are single 14-/16-bit, serial input, voltage output DACs. The parts operate from supply voltages of 2.7 V to 5.5 V . Data is written to the AD5060 in a 24 -bit word format, and to the AD5040 in a 16 -bit word format, via a 3 -wire serial interface.

Both the AD5040 and AD5060 incorporate a power-on reset circuit that ensures the DAC output powers up to a known output state (midscale or zero-scale, see the Ordering Guide). The devices also have a software power-down mode that reduces the typical current consumption to less than $1 \mu \mathrm{a}$.

DAC ARCHITECTURE

The DAC architecture of the AD5060 consists of two matched DAC sections. A simplified circuit diagram is shown in Figure 40. The 4 MSBs of the 16-bit data-word are decoded to drive 15 switches, E1 to E15. Each of these switches connects 1 of 15 matched resistors to either DACGND or the $V_{\text {ReF }}$ buffer output. The remaining 12 bits of the data-word drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder network.

Figure 40. AD5060 DAC Ladder Structure

REFERENCE BUFFER

The AD5040 andAD5060 operate with an external reference. The reference input ($\mathrm{V}_{\text {REF }}$) has an input range of 2 V to $\mathrm{V}_{\mathrm{DD}}-50 \mathrm{mV}$. This input voltage is then used to provide a buffered reference for the DAC core.

SERIAL INTERFACE

The AD5060/AD5040 have a 3-wire serial interface ($\overline{\mathrm{SYNC}}$, SCLK, and DIN), which is compatible with SPI, QSPI, and MICROWIRE interface standards, as well as most DSPs. Figure 2 shows a timing diagram of a typical AD5060 write sequence.
The write sequence begins by bringing the $\overline{\text { SYNC }}$ line low. For the AD5060, data from the DIN line is clocked into the 24 -bit shift register on the falling edge of SCLK. The serial clock frequency can be as high as 30 MHz , making these parts compatible with high speed DSPs. On the 24th falling clock edge, the last data bit is clocked in and the programmed function is executed (that is, a change in the DAC output or a change in the mode of operation).

At this stage, the $\overline{\text { SYNC }}$ line can be kept low or be brought high. In either case, it must be brought high for a minimum of 12 ns before the next write sequence so that a falling edge of $\overline{\text { SYNC }}$ can initiate the next write sequence. Because the $\overline{\text { SYNC }}$ buffer draws more current when $\mathrm{V}_{\mathrm{IH}}=1.8 \mathrm{~V}$ than it does when $\mathrm{V}_{\mathrm{IH}}=0.8 \mathrm{~V}, \overline{\text { SYNC }}$ should be idled low between write sequences for an even lower power operation of the part. As previously indicated, however, it must be brought high again just before the next write sequence. The AD5040 requires 16 clock periods to update the input shift register. On the 16th falling clock edge, the last data bit is clocked in and the programmed function is executed (that is, a change in the DAC output or a change in the mode of operation).

Input Shift Register

The AD5060 input shift register is 24 bits wide; see Figure 41. PD1 and PD0 are control bits that control the operating mode of the part-normal mode or any one of three power-down modes (see the Power-Down Modes section for more detail). The next 16 bits are the data bits. These are transferred to the DAC register on the 24th falling edge of SCLK.

Figure 41. AD5060 Input Register Content

AD5040/AD5060

The AD5040 input shift register is 16 bits wide; see Figure 42. PD1 and PD0 are control bits that control the operating mode of the part—normal mode or any one of two power-down modes (see Power-Down Modes section for more detail). The next 14 bits are the data bits. These are transferred to the DAC register on the 16th falling edge of SCLK.

$\overline{\text { SYNC }}$ Interrupt

In a normal write sequence for the AD5060, the $\overline{\text { SYNC }}$ line is kept low for at least 24 falling edges of SCLK, and the DAC is updated on the 24th falling edge. However, if $\overline{\mathrm{SYNC}}$ is brought high before the 24th falling edge, the write sequence is interrupted. The shift register is reset and the write sequence is considered invalid. Neither an update of the DAC register contents nor a change in the operating mode occurs; see Figure 43. In a normal write sequence for the AD5040, the $\overline{\mathrm{SYNC}}$ line is kept low for at least 16 falling edges of SCLK, and the DAC is updated on the 16th falling edge. However, if $\overline{S Y N C}$ is brought high before the 16th falling edge, the write sequence is interrupted. The shift register is reset and the write sequence is considered invalid. Neither an update of the DAC register contents nor a change in the operating mode occurs.

POWER-ON RESET

The AD5040 and AD5060 both contain a power-on reset circuit that controls the output voltage during power-up. The DAC register is filled with the zero-scale code or midscale code and the output voltage is set to zero scale or midscale (see the Ordering Guide for more details on the reset model). It remains there until a valid write sequence is made to the DAC. This is useful in applications where it is important to know the output state of the DAC while it is in the process of powering up.

SOFTWARE RESET

The AD5060 device can be put into software reset by setting all bits in the DAC register to 1; this includes writing 1s to Bit D23 and Bit D16, which is not the normal mode of operation. For the AD5040 this includes writing 1s to Bit D15 and Bit D14, which is also not the normal mode of operation. Note that the $\overline{\text { SYNC }}$ interrupt command cannot be performed if a software reset command is started in the AD5040 or AD5060.

Figure 42. AD5040 Input Register Content

Figure 43. AD5060 SYNC Interrupt Facility

POWER-DOWN MODES

The AD5060 features four operating modes, and the AD5040 features three operating modes. These modes are software programmable by setting two bits in the control register (Bit DB17 and Bit DB16 in the AD5060 and Bit DB15 and Bit DB14 in the AD5040). Table 6 and Table 7 show how the state of the bits corresponds to the operating mode of the two devices.

Table 6. Operating Modes for the AD5060

DB17	DB16	Operating Mode
0	0	Normal operation
		Power-down modes:
0	1	3 -state
1	0	$100 \mathrm{k} \Omega$ to GND
1	1	$1 \mathrm{k} \Omega$ to GND

Table 7. Operating Modes for the AD5040

DB15	DB14	Operating Mode
0	0	Normal operation
		Power-down modes:
0	1	3 -state
1	0	$100 \mathrm{k} \Omega$ to GND
1	1	See Software Reset section

In both the AD5060 and the AD5040, when the two most significant bits are set to 0 , the part has normal power consumption. However, for the three power-down modes of the AD5060 and the two power down modes of the AD5040, the supply current falls to less than $1 \mu \mathrm{~A}$ at $5 \mathrm{~V}(65 \mathrm{nA}$ at 3 V$)$. Not only does the supply current fall, but the output stage is also internally switched from the output of the amplifier to a resistor network of known values. This is advantageous because the output impedance of the part is known while the part is in power-down mode. The output is connected internally to GND through a $1 \mathrm{k} \Omega$ resistor (AD5060 only) or a $100 \mathrm{k} \Omega$ resistor, or it is left open-circuited (three-stated). The output stage is illustrated in Figure 44.

Figure 44. Output Stage During Power-Down
The bias generator, the DAC core, and other associated linear circuitry are all shut down when power-down mode is activated. However, the contents of the DAC register are unaffected when in power-down. The time to exit power-down is typically $2.5 \mu \mathrm{~s}$ for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, and $5 \mu \mathrm{~s}$ for $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$; see Figure 29.

MICROPROCESSOR INTERFACING

AD5040/AD5060 to ADSP-2101/ADSP-2103 Interface

Figure 45 shows a serial interface between the AD5040/AD5060 and the ADSP-2101/ADSP-2103. The ADSP-2101/ADSP-2103 should be set up to operate in the SPORT transmit alternate framing mode. The ADSP-2101/ADSP-2103 sport is programmed through the SPORT control register and should be configured for internal clock operation, active low framing, and 16-bit word length. Transmission is initiated by writing a word to the Tx register after the SPORT has been enabled.

${ }^{1}$ ADDITIONAL PINS OMITTED FOR CLARITY
Figure 45. AD5040/AD5060 to ADSP-2101/ADSP-2103 Interface

AD5040/AD5060 to 68HC11/68L1 1 Interface

Figure 46 shows a serial interface between the AD5040/ AD5060 and the 68HC11/68L11 microcontroller. SCK of the $68 \mathrm{HC} 11 / 68 \mathrm{~L} 11$ drives the SCLK pin of the AD5040/AD5060, while the MOSI output drives the serial data line of the DAC. The $\overline{\text { SYNC }}$ signal is derived from a port line (PC7). The setup conditions for correct operation of this interface require that the $68 \mathrm{HC11/68L11}$ be configured so that its CPOL bit is 0 and its CPHA bit is 1 . When data is being transmitted to the DAC, the SYNC line is taken low (PC7). When the $68 \mathrm{HC11/68L11}$ is configured where its CPOL bit is 0 and its CPHA bit is 1 , data appearing on the MOSI output is valid on the falling edge of SCK. Serial data from the $68 \mathrm{HC} 11 / 68 \mathrm{~L} 11$ is transmitted in 8 -bit bytes with only 8 falling clock edges occurring in the transmit cycle. Data is transmitted MSB first. In order to load data to the AD5040/AD5060, PC7 is left low after the first eight bits are transferred, and a second serial write operation is performed to the DAC. PC7 is taken high at the end of this procedure.

${ }^{1}$ ADDITIONAL PINS OMITTED FOR CLARITY
Figure 46. AD5040/AD5060 to 68HC11/68L11 Interface

AD5040/AD5060

AD5040/AD5060 to Blackfin ${ }^{\circledR}$ ADSP-BF53x Interface

Figure 47 shows a serial interface between the AD5040/ AD5060 and the Blackfin ADSP-53x microprocessor. The ADSP-BF53x processor family incorporates two dual-channel synchronous serial ports, SPORT1 and SPORT0, for serial and multiprocessor communications. Using SPORT0 to connect to the AD5040/AD5060, the setup for the interface is: DT0PRI drives the SDIN pin of the AD5040/AD5060, while TSCLK0 drives the SCLK of the part; the $\overline{\text { SYNC }}$ is driven from TFSO.

${ }^{1}$ ADDITIONAL PINS OMITTED FOR CLARITY
Figure 47. AD5040/AD5060 to Blackfin ${ }^{\ominus}$ ADSP-BF53x Interface

AD5040/AD5060 to 80C51/80L51 Interface

Figure 48 shows a serial interface between the AD5060/ AD5040 and the 80C51/80L51 microcontroller. The setup for the interface is: TxD of the 80C51/80L51 drives SCLK of the AD5040/AD5060 while RxD drives the serial data line of the part. The $\overline{S Y N C}$ signal is again derived from a bitprogrammable pin on the port. In this case, Port Line P3.3 is used. When data is to be transmitted to the AD5040, P3.3 is taken low. The 80C51/80L51 transmits data only in 8-bit bytes; thus only 8 falling clock edges occur in the transmit cycle. To load data to the DAC, P3.3 is left low after the first eight bits are transmitted, and a second write cycle is initiated to transmit the second byte of data. P3.3 is taken high following the completion of this cycle. The 80C51/80L51 outputs the serial data in a format which has the LSB first. The AD5040/AD5060 require data to be received with the MSB as the first bit. The 80C51/80L51 transmit routine should take this into account.
${ }^{1}$ ADDITIONAL PINS OMITTED FOR CLARITY
Figure 48. AD5040/AD5060 to 80C51/80L51 Interface

AD5040/AD5060 to MICROWIRE Interface

Figure 49 shows an interface between the AD5040/AD5060 and any MICROWIRE-compatible device. Serial data is shifted out on the falling edge of the serial clock and is clocked into the AD5040/AD5060 on the rising edge of the SK.

${ }^{1}$ ADDITIONAL PINS OMITTED FOR CLARITY
Figure 49. AD5040/AD5060 to MICROWIRE Interface

APPLICATIONS

CHOOSING A REFERENCE FOR THE AD5040/ AD5060

To achieve the optimum performance from the AD5040/ AD5060, carefully choose a precision voltage reference. The AD5040/AD5060 have just one reference input, Vref. The voltage on the reference input is used to supply the positive input to the DAC. Therefore, any error in the reference is reflected in the DAC.

There are four possible sources of error to consider when choosing a voltage reference for high accuracy applications: initial accuracy, ppm drift, long-term drift, and output voltage noise. Initial accuracy on the output voltage of the DAC leads to a full-scale error in the DAC. To minimize these errors, a reference with high initial accuracy is preferred. Also, choosing a reference with an output trim adjustment, such as an ADR43x device, allows a system designer to trim out system errors by setting a reference voltage to a voltage other than the nominal. The trim adjustment can also be used at temperature to trim out any errors.

Because the supply current required by the AD5040/AD5060 is extremely low, the parts are ideal for low supply applications. The ADR395 voltage reference is recommended. This requires less than $100 \mu \mathrm{~A}$ of quiescent current and can, therefore, drive multiple DACs in one system, if required. It also provides very good noise performance at $8 \mu \mathrm{~V}$ p-p in the 0.1 Hz to 10 Hz range.

Figure 50. ADR395 as Reference to AD5060/AD5040
Long-term drift is a measure of how much the reference drifts over time. A reference with a tight long-term drift specification ensures that the overall solution remains relatively stable during its entire lifetime. The temperature coefficient of a reference output voltage affects INL, DNL, and TUE. A reference with a tight temperature coefficient specification should be chosen to reduce the temperature dependence of the DAC output voltage on ambient conditions.

In high accuracy applications, which have a relatively low noise budget, reference output voltage noise needs to be considered. It is important to choose a reference with as low an output noise voltage as practical for the system noise resolution required. Precision voltage references, such as the ADR435, produce low
output noise in the 0.1 Hz to 10 Hz region. Table 8 shows examples of recommended precision references for use as a supply to the AD5040/AD5060.
Table 8. Precision References for the AD5040/AD5060

	Initial Accuracy $(\mathbf{m V}$ max)	Temp. Drift (ppm/ ${ }^{\circ} \mathbf{C}$ max)	$\mathbf{0 . 1 ~ H z ~ t o ~ 1 0 ~ H z ~}$ Noise ($\boldsymbol{\mu V} \mathbf{~ p - p}$ typ)
ADR435	± 2	3 (SO-8)	8
ADR425	± 2	$3($ SO-8)	3.4
ADR02	± 3	$3($ SO-8)	10
ADR02	± 3	3 (SC70)	10
ADR395	± 5	9 (TSOT-23)	8

BIPOLAR OPERATION USING THE AD5040/ AD5060

The AD5040/AD5060 have been designed for single-supply operation, but a bipolar output range is also possible using the circuit in Figure 51. The circuit shown yields an output voltage range of $\pm 5 \mathrm{~V}$. Rail-to-rail operation at the amplifier output is achievable using an AD8675/AD820/AD8032 or an OP196/ OP295.

The output voltage for any input code can be calculated as

$$
V_{O}=\left[V_{D D} \times\left(\frac{D}{65536}\right) \times\left(\frac{R 1+R 2}{R 1}\right)-V_{D D} \times\left(\frac{R 2}{R 1}\right)\right]
$$

where D represents the input code in decimal (0 to 65536 , AD5060).

With $\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{R} 1=\mathrm{R} 2=10 \mathrm{k} \Omega$:

$$
V_{O}=\left(\frac{10 \times D}{65536}\right)-5 \mathrm{~V}
$$

Using the AD5060, this is an output voltage range of $\pm 5 \mathrm{~V}$ with 0×0000 corresponding to a -5 V output and $0 \times \mathrm{FFFF}$ corresponding to $\mathrm{a}+5 \mathrm{~V}$ output .

Figure 51. Bipolar Operation with the AD5040/AD5060

AD5040/AD5060

USING THE AD5040/AD5060 WITH A GALVANICALLY ISOLATED INTERFACE CHIP

In process control applications in industrial environments, it is often necessary to use a galvanically isolated interface to protect and isolate the controlling circuitry from any hazardous common-mode voltages that can occur in the area where the DAC is functioning. iCoupler® provides isolation in excess of 2.5 kV . Because the AD5040/AD5060 use a 3-wire serial logic interface, the ADuM130x family provides an ideal digital solution for the DAC interface.

The ADuM130x isolators provide three independent isolation channels in a variety of channel configurations and data rates. They operate across the full range from 2.7 V to 5.5 V , providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier.

Figure 52 shows a typical galvanically isolated configuration using the AD5040/AD5060. The power supply to the part also needs to be isolated; this is accomplished by using a transformer. On the DAC side of the transformer, a 5 V regulator provides the 5 V supply required for the AD5040/AD5060.

Figure 52. AD5040/AD5060 with a Galvanically Isolated Interface

POWER SUPPLY BYPASSING AND GROUNDING

When accuracy is important in a circuit, it is helpful to carefully consider the power supply and ground return layout on the board. The printed circuit board containing the AD5040/ AD5060 should have separate analog and digital sections, each having its own area of the board. If the AD5040/AD5060 are in a system where other devices require an AGND-to-DGND connection, the connection should be made at one point only. This ground point should be as close as possible to the AD5040/AD5060.

The power supply to the AD5040/AD5060 should be bypassed with $10 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors. The capacitors should be physically as close as possible to the device with the $0.1 \mu \mathrm{~F}$ capacitor ideally right up against the device. The $10 \mu \mathrm{~F}$ capacitors are the tantalum bead type. It is important that the $0.1 \mu \mathrm{~F}$ capacitor has low effective series resistance (ESR) and effective series inductance (ESI), as do common ceramic types of capacitors. This $0.1 \mu \mathrm{~F}$ capacitor provides a low impedance path to ground for high frequencies caused by transient currents due to internal logic switching.

The power supply line itself should have as large a trace as possible to provide a low impedance path and reduce glitch effects on the supply line. Clocks and other fast switching digital signals should be shielded from other parts of the board by a digital ground. Avoid crossover of digital and analog signals, if possible. When traces cross on opposite sides of the board, ensure that they run at right angles to each other to reduce feedthrough effects on the board. The best board layout technique is the microstrip technique where the component side of the board is dedicated to the ground plane only, and the signal traces are placed on the solder side. However, this is not always possible with a two-layer board.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-178-BA
Figure 53. 8-Lead Small Outline Transistor Package [SOT-23]
(RJ-8)
Dimensions shown in millimeters

ORDERING GUIDE

| Model 1 | Temperature
 Range | Maximum
 INL | Description | Package Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Package |
| :--- |
| Option |\quad Branding

[^2]
AD5040/AD5060

NOTES

AD5040/AD5060

NOTES

AD5040/AD5060

NOTES

[^0]: ${ }^{1}$ Temperature range for the A and B grades is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, typical at $25^{\circ} \mathrm{C}$; temperature range for the Y grade is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 ${ }^{2}$ Linearity calculated using a reduced code range (160 to code 65535 for AD5060) and (40 to code 16383 for AD5040).
 ${ }^{3}$ Guaranteed by design and characterization, not production tested.
 ${ }^{4} 1 \mathrm{k} \Omega$ power-down network not available with the AD5040.
 ${ }^{5}$ The typical output supply headroom performance for various reference voltages at $-40^{\circ} \mathrm{C}$ can be seen in Figure 26 .
 ${ }^{6}$ Total current flowing into all pins.

[^1]: ${ }^{1}$ All input signals are specified with $\operatorname{tr}=\mathrm{tf}=1 \mathrm{~ns} / \mathrm{V}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
 ${ }^{2}$ Maximum SCLK frequency is 30 MHz .

[^2]: ${ }^{1} Z=$ RoHS Compliant Part.

