阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Features

- 3.0V to 5.5V Operating Range
- Advanced, High-speed, Electrically-erasable Programmable Logic Device
- Superset of 22V10
- Enhanced Logic Flexibility
- Architecturally Compatible with ATV750B and ATV750 Software and Hardware
- D- or T-type Flip-flop
- Product Term or Direct Input Pin Clocking
- 10 ns Maximum Pin-to-pin Delay with 5V Operation
- 15 ns Maximum Pin-to-pin Delay with 3V Operation
- Highest Density Programmable Logic Available in 24-pin Package
- Advanced Electrically-erasable Technology
- Reprogrammable
- 100\% Tested
- Increased Logic Flexibility
- 42 Array Inputs, 20 Sum Terms and 20 Flip-flops
- Enhanced Output Logic Flexibility
- All 20 Flip-flops Feed Back Internally
- 10 Flip-flops are also Available as Outputs
- Programmable Pin-keeper Circuits
- Dual-in-line and Surface Mount Package in Standard Pinouts
- Commercial and Industrial Temperature Ranges
- 20-year Data Retention
- 2000V ESD Protection
- 1000 Erase/Write Cycles
- Green Package Options (Pb/Halide-free/RoHS Compliant) Available

1. Block Diagram

2. Description

The Atmel ${ }^{\circledR}$ " 750 " architecture is twice as powerful as most other 24 -pin programmable logic devices. Increased product terms, sum terms, flip-flops and output logic configurations translate into more usable gates. High-speed logic and uniform, predictable delays guarantee fast in-system performance. The ATF750LVC is a highperformance CMOS (electrically-erasable) complex programmable logic device (CPLD) that utilizes Atmel's proven electrically-erasable technology.

3. Pin Configurations

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I/O	Bi-directional Buffers
GND	Ground
VCC	3V to 5.5V Supply

3.1 PLCC

Note: 1. For PLCC, pins 1, 8, 15, and 22 can be left unconnected. For superior performance, connect VCC to pin 1 and GND to pins 8, 15, and 22.

Each of the ATF750LVC's 22 logic pins can be used as an input. Ten of these can be used as inputs, outputs or bi-directional I/O pins. Each flip-flop is individually configurable as either D- or T-type. Each flip-flop output is fed back into the array independently. This allows burying of all the sum terms and flip-flops.

There are 171 total product terms available. There are two sum terms per output, providing added flexibility. A variable format is used to assign between four to eight product terms per sum term. Much more logic can be replaced by this device than by any other 24-pin PLD. With 20 sum terms and flip-flops, complex state machines are easily implemented with logic to spare.

Product terms provide individual clocks and asynchronous resets for each flip-flop. Each flipflop may also be individually configured to have direct input pin controlled clocking. Each output has its own enable product term. One product term provides a common synchronous preset for all flip-flops. Register preload functions are provided to simplify testing. All registers automatically reset upon power-up.

4. Absolute Maximum Ratings*

Temperature Under Bias.............................. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Voltage on Any Pin with	
Respect to Ground-2.0V to $+7 \mathrm{~V}^{(1)}$
Voltage on Input Pins with Respect to Ground	
During Programming.....	-2.0 V to $+14.0 \mathrm{~V}^{(1)}$
Programming Voltage with	
Respect to Ground	-2.0V to +14.0V ${ }^{(1)}$

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note: 1. Minimum voltage is -0.6 V DC, which may undershoot to -2.0 V for pulses of less than 20 ns . Maximum output pin voltage is $\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V}$ DC, which may overshoot to 7 V for pulses of less than 20 ns with VCC at VCC max.

5. DC and AC Operating Conditions

	Commercial	Industrial
Operating Temperature (Ambient)	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
V_{CC} Power Supply	$3.0-5.25 \mathrm{~V}$	$3.0-5.5 \mathrm{~V}$

6. Clock Mux

7. Output Options

8. Bus-friendly Pin-keeper Input and I/Os

All input and I/O pins on the ATF750LVC have programmable "pin-keeper" circuits. If activated, when any pin is driven high or low and then subsequently left floating, it will stay at that previous high or low level.

This circuitry prevents unused input and I/O lines from floating to intermediate voltage levels, which cause unnecessary power consumption and system noise. The keeper circuits eliminate the need for external pull-up resistors and eliminate their DC power consumption.

Enabling or disabling of the pin-keeper circuits is controlled by the device type chosen in the logic compiler device selection menu. Please refer to the software compiler table for more details. Once the pin-keeper circuits are disabled, normal termination procedures are required for unused inputs and I/Os.

Table 1. Software Compiler Mode Selection

Synario	WinCupl	Pin-keeper Circuit
ATF750LVC	V750C	Disabled
ATF750LVC (PPK)	V750CPPK	Enabled

9. Input Diagram

10. I/O Diagram

11. DC Characteristics

Symbol	Parameter	Condition			Min	Typ	Max	Units
V_{CC}	Power Supply Voltage	3V Operation			3.0	3.3	3.6	V
		5V Operation		Com.	4.75	5.0	5.25	V
				Ind.	4.5	5.0	5.5	V
I_{LI}	Input Load Current	$\mathrm{V}_{\text {IN }}=-0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$					10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LO }}$	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=-0.1 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}+0.1 \mathrm{~V}$					10	$\mu \mathrm{A}$
I_{CC}	Power Supply Current, Standby	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V} \\ & \text { Outputs Open } \end{aligned}$	C-15	Com.		65	90	mA
				Ind.		70	100	mA
I_{CC}	Power Supply Current, Standby	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5.25 \mathrm{~V} \\ & \text { Outputs Open } \end{aligned}$	C-15	Com.		100	180	mA
				Ind.		110	190	mA
$\mathrm{IOS}^{(1)(2)}$	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$					-120	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\operatorname{Min} \leq \mathrm{V}_{\mathrm{CC}} \leq$ Max			-0.6		0.8	V
V_{IH}	Input High Voltage				2.0		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.75 \end{gathered}$	V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	Com., Ind.			0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Mil.			0.5	V
			$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	Com.			0.8	V
V_{OH}	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		VCC - 0.3V			V
			$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4			V

Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec .
2. This test is performed at initial characterisation only.

12. Input Test Waveforms and Measurement Levels

$$
\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}<3 \mathrm{~ns}(10 \% \text { to } 90 \%)
$$

13. Output Test Load

14. AC Waveforms, Product Term Clock ${ }^{(1)}$

Note: 1. Timing measurement reference is 1.5 V . Input AC driving levels are 0.0 V and 3.0 V , unless otherwise specified.

15. AC Characteristics, Product Term Clock ${ }^{(1)}$

Symbol	Parameter	-15 (5V Operation)		-15 (3V Operation)		Units
		Min	Max	Min	Max	
t_{PD}	Input or Feedback to Non-registered Output		10		15	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable		10		15	ns
t_{ER}	Input to Output Disable		10		15	ns
t_{CO}	Clock to Output	4	10	5	12	ns
t_{CF}	Clock to Feedback	4	7.5	5	9	ns
$\mathrm{t}_{\text {S }}$	Input Setup Time	4		8		ns
$\mathrm{t}_{\text {SF }}$	Feedback Setup Time	4		7		ns
t_{H}	Hold Time	2		5		ns
t_{p}	Clock Period	11		14		ns
t_{w}	Clock Width	5.5		7		ns
$\mathrm{f}_{\text {MAX }}$	External Feedback 1/($\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{co}}$)		71		50	MHz
	Internal Feedback 1/($\mathrm{t}_{\mathrm{SF}}+\mathrm{t}_{\mathrm{CF}}$)		86		62	MHz
	No Feedback 1/(tp)		90		71	MHz
t_{AW}	Asynchronous Reset Width	10		15		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	10		15		ns
$\mathrm{t}_{\text {AP }}$	Asynchronous Reset to Registered Output Reset		12		15	ns
$\mathrm{t}_{\text {SP }}$	Setup Time, Synchronous Preset	7		8		ns

Note: 1. See ordering information for valid part numbers.

16. AC Waveforms, Input Pin Clock ${ }^{(1)}$

Note: 1. Timing measurement reference is 1.5 V . Input AC driving levels are 0.0 V and 3.0 V , unless otherwise specified.

17. AC Characteristics, Input Pin Clock

Symbol	Parameter	-15 (5V Operation)		-15 (3V Operation)		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PD }}$	Input or Feedback to Non-registered Output		10		15	ns
t_{EA}	Input to Output Enable		10		15	ns
$t_{\text {ER }}$	Input to Output Disable		10		15	ns
$\mathrm{t}_{\mathrm{cos}}$	Clock to Output	0	7	0	10	ns
$\mathrm{t}_{\text {CFS }}$	Clock to Feedback	0	5	0	5.5	ns
$\mathrm{t}_{\text {SS }}$	Input Setup Time	5		8		ns
$\mathrm{t}_{\text {SFS }}$	Feedback Setup Time	5		7		ns
t_{HS}	Hold Time	0		5		ns
$t_{\text {PS }}$	Clock Period	10		14		ns
$\mathrm{t}_{\text {ws }}$	Clock Width	5		7		ns
$\mathrm{f}_{\text {MAXS }}$	External Feedback $1 / \mathrm{t}_{\text {SS }}+\mathrm{t}_{\text {cos }}$		83		55	MHz
	Internal Feedback $1 / t_{\text {SFS }}+t_{\text {CFS }}$		100		80	MHz
	No Feedback 1/t ${ }_{\text {PS }}$		100		83	MHz
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	10		15		ns
$\mathrm{t}_{\text {ARS }}$	Asynchronous Reset Recovery Time	10		15		ns
$\mathrm{t}_{\text {AP }}$	Asynchronous Reset to Registered Output Reset		10		15	ns
$\mathrm{t}_{\text {SPS }}$	Setup Time, Synchronous Preset	5		11		ns

A血衁

18. Functional Logic Diagram ATF750LVC, Upper Half

19. Functional Logic Diagram ATF750LVC, Lower Half

20. Using the ATF750LVC's Many Advanced Features

The ATF750LVC's advanced flexibility packs more usable gates into 24 -pins than any other logic device. The ATF750LVCs start with the popular 22V10 architecture, and add several enhanced features:

- Selectable D- and T-type Registers

Each ATF750LVC flip-flop can be individually configured as either D- or T-type. Using the T-type configuration, JK and SR flip-flops are also easily created. These options allow more efficient product term usage.

- Selectable Asynchronous Clocks

Each of the ATF750LVC's flip-flops may be clocked by its own clock product term or directly from Pin 1 (SMD Lead 2). This removes the constraint that all registers must use the same clock. Buried state machines, counters and registers can all coexist in one device while running on separate clocks. Individual flip-flop clock source selection further allows mixing higher performance pin clocking and flexible product term clocking within one design.

- A Full Bank of Ten More Registers

The ATF750LVC provides two flip-flops per output logic cell for a total of 20. Each register has its own sum term, its own reset term and its own clock term.

- Independent I/O Pin and Feedback Paths

Each I/O pin on the ATF750LVC has a dedicated input path. Each of the 20 registers has its own feedback terms into the array as well. This feature, combined with individual product terms for each I/O's output enable, facilitates true bi-directional I/O design.

21. Synchronous Preset and Asynchronous Reset

One synchronous preset line is provided for all 20 registers in the ATF750LVC. The appropriate input signals to cause the internal clocks to go to a high state must be received during a synchronous preset. Appropriate setup and hold times must be met, as shown in the switching waveform diagram.

An individual asynchronous reset line is provided for each of the 20 flip-flops. Both master and slave halves of the flip-flops are reset when the input signals received force the internal resets high.

22. Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF750LVC fuse patterns. Once the security fuse is programmed, all fuses will appear programmed during verify.
The security fuse should be programmed last, as its effect is immediate.

ATF750LVC SUPPLY CURRENT

ATF750LVC INPUT CLAMP CURRENT

$$
\text { VS. INPUT VOLTAGE }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
$$

ATF750LVC SUPPLY CURRENT
VS. INPUT FREQUENCY $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

ATF750LVC OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

NORMALIZED SUPPLY CURRENT OVER TEMPERATURE (AT $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \& 5.0 \mathrm{~V}$)

23. ATF750LVC Ordering Information

23.1 ATF750LVC Green Package Options (Pb/Halide-free/RoHS Compliant)

$\begin{gathered} \mathrm{t}_{\mathrm{PD}} \\ (\mathrm{~ns}) \end{gathered}$	$t_{\text {cos }}$ (ns)	$\begin{aligned} & \text { Ext. } f_{\text {MAXS }} \\ & \left(\mathrm{MH}_{\mathrm{z}}\right) \end{aligned}$	Ordering Code	Package	Operation Range
15	10	55	ATF750LVC-15JU ATF750LVC-15PU ATF750LVC-15SU ATF750LVC-15XU ${ }^{(1)}$	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Note: 1. Special order only; TSSOP package requires special thermal management.

Package Type	
$\mathbf{2 8 J}$	28-Lead, Plastic J-leaded Chip Carrier (PLCC)
$\mathbf{2 4 P 3}$	24-lead, 0.300' Wide, Plastic Dual Inline Package (PDIP)
$\mathbf{2 4 S}$	24-lead, 0.300 " Wide, Plastic Gull Wing Small Outline (SOIC)
$\mathbf{2 4 X}^{*}$	24-lead, 0.173" Wide, Thin Shrink Small Outline (TSSOP)

24. Package Information

24.128 J - PLCC

24.2 24P3 - PDIP

24.3 24S - SOIC

24.4 24X - TSSOP

Dimensions in Millimeter and (Inches)*
JEDEC STANDARD MO-153 AD
Controlling dimension: millimeters

| 2325 Orchard Parkway | TITLE | |
| :--- | :--- | :---: | :---: |
| 24X, 24-lead (4.4 mm body width) Plastic Thin Shrink Small Outline
 Package (TSSOP) | DRAWING NO. | REV. |

25. Revision History

Revision Level - Release Date	History
F - November 2008	Updated datasheet with extended voltage range offering. Removed the leaded parts offering.

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia	Atmel Europe
Unit 1-5 \& 16, 19/F	Le Krebs
BEA Tower, Millennium City 5	8, Rue Jean-Pierre Timbaud
418 Kwun Tong Road	BP 309
Kwun Tong, Kowloon	78054 Saint-Quentin-en-
Hong Kong	Yvelines Cedex
Tel: (852) 2245-6100	France
Fax: (852) 2722-1369	Tel: (33) 1-30-60-70-00
	Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

PLD@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Abstract

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel ${ }^{\circledR}$, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

