阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

FEATURES

PERFORMANCE
13.3 ns Instruction Cycle Time @ 2.5 Volts (Internal), 75 MIPS Sustained Performance
Single-Cycle Instruction Execution
Single-Cycle Context Switch
3-Bus Architecture Allows Dual Operand Fetches in
Every Instruction Cycle
Multifunction Instructions
Power-Down Mode Featuring Low CMOS Standby Power Dissipation with 200 CLKIN Cycle Recovery from Power-Down Condition
Low Power Dissipation in Idle Mode

INTEGRATION

ADSP-2100 Family Code Compatible (Easy to Use Algebraic Syntax), with Instruction Set Extensions 192K Bytes of On-Chip RAM, Configured as 32K Words On-Chip Program Memory RAM and 48K Words OnChip Data Memory RAM
Dual Purpose Program Memory for Both Instruction and Data Storage
Independent ALU, Multiplier/Accumulator and Barrel Shifter Computational Units
Two Independent Data Address Generators
Powerful Program Sequencer Provides Zero Overhead Looping Conditional Instruction Execution Programmable 16-Bit Interval Timer with Prescaler 100-Lead LQFP

SYSTEM INTERFACE

Flexible I/O Structure Allows 2.5 V or 3.3 V Operation; All Inputs Tolerate Up to 3.6 V , Regardless of Mode
16-Bit Internal DMA Port for High Speed Access to OnChip Memory (Mode Selectable)
4 MByte Memory Interface for Storage of Data Tables and Program Overlays (Mode Selectable)
8-Bit DMA to Byte Memory for Transparent Program and Data Memory Transfers (Mode Selectable)
I/O Memory Interface with 2048 Locations Supports Parallel Peripherals (Mode Selectable)
Programmable Memory Strobe and Separate I/O Memory Space Permits "Glueless" System Design
Programmable Wait-State Generation
Two Double-Buffered Serial Ports with Companding Hardware and Automatic Data Buffering
Automatic Booting of On-Chip Program Memory from Byte-Wide External Memory, e.g., EPROM, or Through Internal DMA Port

ICE-Port is a trademark of Analog Devices, Inc.
REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

Six External Interrupts
13 Programmable Flag Pins Provide Flexible System Signaling
UART Emulation through Software SPORT Reconfiguration
ICE-Port ${ }^{\text {TM }}$ Emulator Interface Supports Debugging in Final Systems

GENERAL DESCRIPTION

The ADSP-2189M is a single-chip microcomputer optimized for digital signal processing (DSP) and other high speed numeric processing applications.
The ADSP-2189M combines the ADSP-2100 family base architecture (three computational units, data address generators and a program sequencer) with two serial ports, a 16-bit internal DMA port, a byte DMA port, a programmable timer, Flag I/O, extensive interrupt capabilities, and on-chip program and data memory.
The ADSP-2189M integrates 192 K bytes of on-chip memory configured as 32 K words (24 -bit) of program RAM and 48 K words (16-bit) of data RAM. Power-down circuitry is also provided to meet the low power needs of battery operated portable equipment. The ADSP-2189M is available in a 100 -lead LQFP package.
In addition, the ADSP-2189M supports new instructions, which include bit manipulations-bit set, bit clear, bit toggle, bit testnew ALU constants, new multiplication instruction (x squared), biased rounding, result free ALU operations, I/O memory transfers and global interrupt masking, for increased flexibility.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703
© Analog Devices, Inc., 2000

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- EZ-KIT Lite Evaluation Kit for ADSP-218x Processor

DOCUMENTATION

Application Notes

- AN-227: Digital Control System Design with the ADSP-2100 Family
- AN-227: Digital Control System Design with the ADSP-2100 Family
- AN-334: Digital Signal Processing Techniques
- AN-524: ADV601/ADV611 Bin Width Calculation in ADSP-21xx DSP
- EE-06: ADSP-21xx Serial Port Startup Issues
- EE-100: ADSP-218x External Overlay Memory
- EE-102: Mode D and ADSP-218x Pin Compatibility - the FAQs
- EE-104: Setting Up Streams with the VisualDSP Debugger
- EE-11: ADSP-2181 Priority Chain \& IDMA Holdoffs
- EE-110: A Quick Primer on ELF and DWARF File Formats
- EE-115: ADSP-2189 IDMA Interface to Motorola MC68300 Family of Microprocessors
- EE-12: Interrupts and Programmable Flags on the ADSP-2185/2186
- EE-121: Porting Code from ADSP-21xx to ADSP-219x
- EE-122: Coding for Performance on the ADSP-219x
- EE-123: An Overview of the ADSP-219x Pipeline
- EE-124: Booting up the ADSP-2192
- EE-125: ADSP-218x Embedded System Software Management and In-System-Programming (ISP)
- EE-128: DSP in C++: Calling Assembly Class Member Functions From C++
- EE-129: ADSP-2192 Interprocessor Communication
- EE-130: Making Fast Transition from ADSP-21xx to ADSP-219x
- EE-131: Booting the ADSP-2191/95/96 DSPs
- EE-133: Converting From Legacy Architecture Files To Linker Description Files for the ADSP-218x
- EE-139: Interfacing the ADSP-2191 to an AD7476 via the SPI Port
- EE-142: Autobuffering, C and FFTs on the ADSP-218x
- EE-144: Creating a Master-Slave SPI Interface Between Two ADSP-2191 DSPs
- EE-145: SPI Booting of the ADSP-2191 using the Atmel AD25020N on an EZ-KIT Lite Evaluation Board
- EE-146: Implementing a Boot Manager for ADSP-218x Family DSPs
- EE-152: Using Software Overlays with the ADSP-219x and VisualDSP 2.0++
- EE-153: ADSP-2191 Programmable PLL
- EE-154: ADSP-2191 Host Port Interface
- EE-156: Support for the H. 100 protocol on the ADSP-2191
- EE-158: ADSP-2181 EZ-Kit Lite IDMA to PC Printer Port Interface
- EE-159: Initializing DSP System \& Control Registers From C and C++
- EE-164: Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs
- EE-168: Using Third Overtone Crystals with the ADSP-218x DSP
- EE-17: ADSP-2187L Memory Organization
- EE-18: Choosing and Using FFTs for ADSP-21xx
- EE-188: Using C To Implement Interrupt-Driven Systems On ADSP-219x DSPs
- EE-2: Using ADSP-218x I/O Space
- EE-226: ADSP-2191 DSP Host Port Booting
- EE-227: CAN Configuration Procedure for ADSP-21992 DSPs
- EE-249: Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++ ${ }^{\ominus}$
- EE-32: Language Extensions: Memory Storage Types, ASM \& Inline Constructs
- EE-33: Programming The ADSP-21xx Timer In C
- EE-35: Troubleshooting your ADSP-218x EZ-ICE
- EE-356: Emulator and Evaluation Hardware Troubleshooting Guide for CCES Users
- EE-36: ADSP-21xx Interface to the IOM-2 bus
- EE-38: ADSP-2181 IDMA Port - Cycle Steal Timing
- EE-39: Interfacing 5V Flash Memory to an ADSP-218x (Byte Programming Algorithm)
- EE-48: Converting Legacy 21xx Systems To A 218x System Design
- EE-5: ADSP-218x Full Memory Mode vs. Host Memory Mode
- EE-60: Simulating an RS-232 UART Using the Synchronous Serial Ports on the ADSP-21xx Family DSPs
- EE-64: Setting Mode Pins on Reset
- EE-68: Analog Devices JTAG Emulation Technical Reference
- EE-71: Minimum Rise Time Specs for Critical Interrupt and Clock Signals on the ADSP-21x1/21x5
- EE-74: Analog Devices Serial Port Development and Troubleshooting Guide
- EE-78: BDMA Usage on 100 pin ADSP-218x DSPs Configured for IDMA Use
- EE-79: EPROM Booting In Host Mode with 100 Pin 218x Processors
- EE-82: Using an ADSP-2181 DSP's IO Space to IDMA Boot Another ADSP-2181
- EE-89: Implementing A Software UART on the ADSP-2181 EZ-Kit-Lite
- EE-90: Using the 21xx C-FFT Library
- EE-96: Interfacing Two AD73311 Codecs to the ADSP-218x

Data Sheet

- ADSP-2189M: DSP Microcomputer Data Sheet

Emulator Manuals

- ADSP-218X Family EZ-ICE Hardware Installation Guide

Evaluation Kit Manuals

- ADSP-2189M EZ-KIT Lite ${ }^{\ominus}$ Evaluation System Manual
- ADSP-218x DSP family and ADSP-2192 EZ-KIT Lite ${ }^{\bullet}$ Installation Procedure -Non-USB

Integrated Circuit Anomalies

- ADSP-2189M Anomaly List for Revision 0.0-0.4

Processor Manuals

- ADSP 21xx Processors: Manuals
- ADSP-218x DSP Hardware Reference
- ADSP-218x DSP Instruction Set Reference
- Using the ADSP-2100 Family Volume 1
- Using the ADSP-2100 Family Volume 2

Software Manuals

- VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and ADSP-219x DSPs
- VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs
- VisualDSP++ 3.5 C/C++ Compiler and Library Manual for ADSP-219x Processors
- VisualDSP++ 3.5 Component Software Engineering User's Guide for 16-Bit Processors
- VisualDSP++ 3.5 Getting Started Guide for 16-Bit Processors
- VisualDSP++ 3.5 Kernel VDK User's Guide for 16-Bit Processors
- VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors
- VisualDSP++ 3.5 Loader Manual for 16-Bit Processors
- VisualDSP++ 3.5 User's Guide for 16-Bit Processors

SOFTWARE AND SYSTEMS REQUIREMENTS

- Software and Tools Anomalies Search

TOOLS AND SIMULATIONS \square

- ADSP-21xx Processors: Software and Tools
- ADSP-218xM IBIS Datafile (LQFP Package)

REFERENCE MATERIALS \square

Product Selection Guide

- ADI Complementary Parts Guide - Supervisory Devices and DSP Processors

DESIGN RESOURCES

- ADSP-2189M Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADSP-2189M EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

Symbols and Footpints

Fabricated in a high speed, low power, CMOS process, the ADSP-2189M operates with a 13.3 ns instruction cycle time. Every instruction can execute in a single processor cycle.
The ADSP-2189M's flexible architecture and comprehensive instruction set allow the processor to perform multiple operations in parallel. In one processor cycle, the ADSP-2189M can:

- Generate the next program address
- Fetch the next instruction
- Perform one or two data moves
- Update one or two data address pointers
- Perform a computational operation

This takes place while the processor continues to:

- Receive and transmit data through the two serial ports
- Receive and/or transmit data through the internal DMA port
- Receive and/or transmit data through the byte DMA port
- Decrement timer

DEVELOPMENT SYSTEM

The ADSP-2100 Family Development Software, a complete set of tools for software and hardware system development, supports the ADSP-2189M. The System Builder provides a high level method for defining the architecture of systems under development. The Assembler has an algebraic syntax that is easy to program and debug. The Linker combines object files into an executable file. The Simulator provides an interactive instruc-tion-level simulation with a reconfigurable user interface to display different portions of the hardware environment.
A PROM Splitter generates PROM programmer compatible files. The C Compiler, based on the Free Software Foundation's GNU C Compiler, generates ADSP-2189M assembly source code. The source code debugger allows programs to be corrected in the C environment. The Runtime Library includes over 100 ANSI-standard mathematical and DSP-specific functions.
The EZ-KIT Lite is a hardware/software kit offering a complete development environment for the entire ADSP-21xx family: an ADSP-218x-based evaluation board with PC monitor software plus Assembler, Linker, Simulator and PROM Splitter software. The ADSP-218x EZ-KIT Lite is a low cost, easy to use hardware platform on which you can quickly get started with your DSP software design. The EZ-KIT Lite includes the following features:

- 33 MHz ADSP-218x
- Full 16-bit Stereo Audio I/O with AD1847 SoundPort ${ }^{\circledR}$ Codec
- RS-232 Interface to PC with Windows 3.1 Control Software
- EZ-ICE Connector for Emulator Control
- DSP Demo Programs

The ADSP-218x EZ-ICE ${ }^{\circledR}$ Emulator aids in the hardware debugging of an ADSP-2189M system. The emulator consists of hardware, host computer resident software and the target board connector. The ADSP-2189M integrates on-chip emulation support with a 14 -pin ICE-Port interface. This interface provides a simpler target board connection that requires fewer mechanical clearance considerations than other ADSP-2100 Family EZ-ICEs. The ADSP-2189M device need not be removed from the target system when using the EZ-ICE, nor are any adapters needed. Due to the small footprint of the EZ-ICE connector, emulation can be supported in final board designs.

The EZ-ICE performs a full range of functions, including:

- In-target operation
- Up to 20 breakpoints
- Single-step or full-speed operation
- Registers and memory values can be examined and altered
- PC upload and download functions
- Instruction-level emulation of program booting and execution
- Complete assembly and disassembly of instructions
- C source-level debugging

See "Designing An EZ-ICE-Compatible Target System" in the ADSP-2100 Family EZ-Tools Manual (ADSP-2181 sections) as well as the Designing an EZ-ICE compatible System section of this data sheet for the exact specifications of the EZ-ICE target board connector.

Additional Information

This data sheet provides a general overview of ADSP-2189M functionality. For additional information on the architecture and instruction set of the processor, refer to the ADSP-2100 Family User's Manual, Third Edition. For more information about the development tools, refer to the ADSP-2100 Family Development Tools Data Sheet.

ARCHITECTURE OVERVIEW

The ADSP-2189M instruction set provides flexible data moves and multifunction (one or two data moves with a computation) instructions. Every instruction can be executed in a single processor cycle. The ADSP-2189M assembly language uses an algebraic syntax for ease of coding and readability. A comprehensive set of development tools supports program development.

Figure 1. Functional Block Diagram
Figure 1 is an overall block diagram of the ADSP-2189M. The processor contains three independent computational units: the ALU, the multiplier/accumulator (MAC) and the shifter. The computational units process 16 -bit data directly and have provisions to support multiprecision computations. The ALU performs a standard set of arithmetic and logic operations; division primitives are also supported. The MAC performs single-cycle multiply, multiply/add and multiply/subtract operations with 40 bits of accumulation. The shifter performs logical and arithmetic shifts, normalization, denormalization and derive exponent operations.
The shifter can be used to efficiently implement numeric format control including multiword and block floating-point representations.

The internal result (R) bus connects the computational units so that the output of any unit may be the input of any unit on the next cycle.
A powerful program sequencer and two dedicated data address generators ensure efficient delivery of operands to these computational units. The sequencer supports conditional jumps, subroutine calls and returns in a single cycle. With internal loop counters and loop stacks, the ADSP-2189M executes looped code with zero overhead; no explicit jump instructions are required to maintain loops.
Two data address generators (DAGs) provide addresses for simultaneous dual operand fetches (from data memory and program memory). Each DAG maintains and updates four address pointers. Whenever the pointer is used to access data (indirect addressing), it is post-modified by the value of one of four possible modify registers. A length value may be associated with each pointer to implement automatic modulo addressing for circular buffers.

Efficient data transfer is achieved with the use of five internal buses:

- Program Memory Address (PMA) Bus
- Program Memory Data (PMD) Bus
- Data Memory Address (DMA) Bus
- Data Memory Data (DMD) Bus
- Result (R) Bus

The two address buses (PMA and DMA) share a single external address bus, allowing memory to be expanded off-chip and the two data buses (PMD and DMD) share a single external data bus. Byte memory space and I/O memory space also share the external buses.

Program memory can store both instructions and data, permitting the ADSP-2189M to fetch two operands in a single cycle, one from program memory and one from data memory. The ADSP-2189M can fetch an operand from program memory and the next instruction in the same cycle.
In lieu of the address and data bus for external memory connection, the ADSP-2189M may be configured for 16-bit Internal DMA port (IDMA port) connection to external systems. The IDMA port is made up of 16 data/address pins and five control pins. The IDMA port provides transparent, direct access to the DSPs on-chip program and data RAM.

An interface to low cost byte-wide memory is provided by the Byte DMA port (BDMA port). The BDMA port is bidirectional and can directly address up to four megabytes of external RAM or ROM for off-chip storage of program overlays or data tables.
The byte memory and I/O memory space interface supports slow memories and I/O memory-mapped peripherals with programmable wait-state generation. External devices can gain control of external buses with bus request/grant signals ($\overline{\mathrm{BR}}$, $\overline{\mathrm{BGH}}$ and $\overline{\mathrm{BG}}$). One execution mode (Go Mode) allows the ADSP-2189M to continue running from on-chip memory. Normal execution mode requires the processor to halt while buses are granted.
The ADSP-2189M can respond to eleven interrupts. There can be up to six external interrupts (one edge-sensitive, two levelsensitive and three configurable) and seven internal interrupts generated by the timer, the serial ports (SPORTs), the Byte DMA port and the power-down circuitry. There is also a master
$\overline{\mathrm{RESET}}$ signal. The two serial ports provide a complete synchronous serial interface with optional companding in hardware and a wide variety of framed or frameless data transmit and receive modes of operation.
Each port can generate an internal programmable serial clock or accept an external serial clock.
The ADSP-2189M provides up to 13 general-purpose flag pins. The data input and output pins on SPORT1 can be alternatively configured as an input flag and an output flag. In addition, eight flags are programmable as inputs or outputs and three flags are always outputs.
A programmable interval timer generates periodic interrupts. A 16-bit count register (TCOUNT) decrements every n processor cycles, where n is a scaling value stored in an 8 -bit register (TSCALE). When the value of the count register reaches zero, an interrupt is generated and the count register is reloaded from a 16-bit period register (TPERIOD).

Serial Ports

The ADSP-2189M incorporates two complete synchronous serial ports (SPORT0 and SPORT1) for serial communications and multiprocessor communication.
Here is a brief list of the capabilities of the ADSP-2189M SPORTs. For additional information on Serial Ports, refer to the ADSP-2100 Family User's Manual, Third Edition.

- SPORTs are bidirectional and have a separate, double-buffered transmit and receive section.
- SPORTs can use an external serial clock or generate their own serial clock internally.
- SPORTs have independent framing for the receive and transmit sections. Sections run in a frameless mode or with frame synchronization signals internally or externally generated. Frame sync signals are active high or inverted, with either of two pulsewidths and timings.
- SPORTs support serial data word lengths from 3 to 16 bits and provide optional A-law and μ-law companding according to CCITT recommendation G.711.
- SPORT receive and transmit sections can generate unique interrupts on completing a data word transfer.
- SPORTs can receive and transmit an entire circular buffer of data with only one overhead cycle per data word. An interrupt is generated after a data buffer transfer.
- SPORT0 has a multichannel interface to selectively receive and transmit a 24 - or 32-word, time-division multiplexed, serial bitstream.
- SPORT1 can be configured to have two external interrupts ($\overline{\mathrm{IRQ} 0}$ and $\overline{\mathrm{IRQ} 1}$) and the Flag In and Flag Out signals. The internally generated serial clock may still be used in this configuration.

PIN DESCRIPTIONS

The ADSP-2189M will be available in a 100 -lead LQFP package. In order to maintain maximum functionality and reduce package size and pin count, some serial port, programmable flag, interrupt and external bus pins have dual, multiplexed functionality. The external bus pins are configured during RESET only, while serial port pins are software configurable during program execution. Flag and interrupt functionality is retained concurrently on multiplexed pins. In cases where pin
functionality is reconfigurable, the default state is shown in plain text; alternate functionality is shown in italics.

NOTES
${ }^{1}$ Interrupt/Flag Pins retain both functions concurrently. If IMASK is set to enable the corresponding interrupts, then the DSP will vector to the appropriate interrupt vector address when the pin is asserted, either by external devices, or set as a programmable flag.
${ }^{2}$ SPORT configuration determined by the DSP System Control Register. Software configurable.

Memory Interface Pins

The ADSP-2189M processor can be used in one of two modes, Full Memory Mode, which allows BDMA operation with full external overlay memory and I/O capability, or Host Mode, which allows IDMA operation with limited external addressing capabilities. The operating mode is determined by the state of the Mode C pin during $\overline{\mathrm{RESET}}$ and cannot be changed while the processor is running.
Full Memory Mode Pins (Mode C=0)

Pin Name	\# of Pins	I/O	Function
A13:0	14	O	Address Output Pins for Program, Data, Byte and I/O Spaces D23:0
24	I/O	Data I/O Pins for Program, Data, Byte and I/O Spaces (8 MSBs are also used as Byte Memory addresses.)	

Host Mode Pins (Mode C=1)

Pin Name	\# of Pins	I/O	Function
IAD15:0	16	I/O	IDMA Port Address/Data Bus A0
1	O	Address Pin for External I/O, Program, Data, or Byte Access ${ }^{1}$	
D23:8	16	I/O	Data I/O Pins for Program, Data Byte and I/O Spaces
$\overline{\text { IWR }}$	1	I	IDMA Write Enable
$\overline{\text { IRD }}$	1	I	IDMA Read Enable
IAL	1	I	IDMA Address Latch Pin IDMA Select
$\overline{\text { IS }}$	1	I	IDMCK IDMA Port Acknowledge Config- urable in Mode D; Open Drain

NOTE

${ }^{1}$ In Host Mode, external peripheral addresses can be decoded using the A0, $\overline{\mathrm{CMS}}, \overline{\text { PMS }}, \overline{\mathrm{DMS}}$ and $\overline{\text { IOMS }}$ signals.

Interrupts

The interrupt controller allows the processor to respond to the eleven possible interrupts and reset with minimum overhead. The ADSP-2189M provides four dedicated external interrupt input pins, $\overline{\mathrm{IRQ} 2}, \overline{\mathrm{IRQL0}}, \overline{\mathrm{IRQL1}}$ and $\overline{\mathrm{IRQE}}$ (shared with the PF7:4 pins). In addition, SPORT1 may be reconfigured for $\overline{\text { IRQ0 }}, \overline{\overline{I R Q 1}}$, FLAG_IN and FLAG_OUT, for a total of six external interrupts. The ADSP-2189M also supports internal interrupts from the timer, the byte DMA port, the two serial ports, software and the power-down control circuit. The interrupt levels are internally prioritized and individually maskable (except power-down and reset). The $\overline{\mathrm{IRQ} 2}, \overline{\overline{\mathrm{IRQ}} 0}$ and $\overline{\mathrm{IRQ}}$ input pins can be programmed to be either level- or edge-sensitive. $\overline{\mathrm{IRQL0}}$ and $\overline{\mathrm{IRQL1}}$ are level-sensitive and $\overline{\mathrm{IRQE}}$ is edgesensitive. The priorities and vector addresses of all interrupts are shown in Table I.

Table I. Interrupt Priority and Interrupt Vector Addresses

Source Of Interrupt	Interrupt Vector Address (Hex)
$\overline{\text { RESET }}$ (or Power-Up with PUCR = 1)	0000 (Highest Priority)
Power-Down (Nonmaskable)	002 C
$\overline{\text { IRQ2 }}$	0004
$\overline{\text { IRQL1 }}$	0008
$\overline{\text { IRQL0 }}$	000 C
SPORT0 Transmit	0010
SPORT0 Receive	0014
$\overline{\text { IRQE }}$	0018
BDMA Interrupt	001 C
SPORT1 Transmit or $\overline{\text { IRQ1 }}$	0020
SPORT1 Receive or $\overline{\text { IRQ0 }}$	0024
Timer	0028 (Lowest Priority)

Interrupt routines can either be nested with higher priority interrupts taking precedence or processed sequentially. Interrupts can be masked or unmasked with the IMASK register. Individual interrupt requests are logically ANDed with the bits in IMASK; the highest priority unmasked interrupt is then selected. The power-down interrupt is nonmaskable.

The ADSP-2189M masks all interrupts for one instruction cycle following the execution of an instruction that modifies the IMASK register. This does not affect serial port autobuffering or DMA transfers.
The interrupt control register, ICNTL, controls interrupt nesting and defines the $\overline{\mathrm{IRQ} 0}, \overline{\mathrm{IRQ1}}$ and $\overline{\mathrm{IRQ} 2}$ external interrupts to be either edge- or level-sensitive. The IRQE pin is an external edge-sensitive interrupt and can be forced and cleared. The $\overline{\mathrm{IRQL0}}$ and $\overline{\mathrm{IRQL1}}$ pins are external level-sensitive interrupts.
The IFC register is a write-only register used to force and clear interrupts. On-chip stacks preserve the processor status and are automatically maintained during interrupt handling. The stacks are twelve levels deep to allow interrupt, loop and subroutine nesting. The following instructions allow global enable or disable servicing of the interrupts (including power-down), regardless of the state of IMASK. Disabling the interrupts does not affect serial port autobuffering or DMA.
ENA INTS;
DIS INTS;
When the processor is reset, interrupt servicing is enabled.

LOW POWER OPERATION

The ADSP-2189M has three low power modes that significantly reduce the power dissipation when the device operates under standby conditions. These modes are:

- Power-Down
- Idle
- Slow Idle

The CLKOUT pin may also be disabled to reduce external power dissipation.

Power-Down

The ADSP-2189M processor has a low power feature that lets the processor enter a very low power dormant state through hardware or software control. Here is a brief list of powerdown features. Refer to the ADSP-2100 Family User's Manual,

Third Edition, "System Interface" chapter, for detailed information about the power-down feature.

- Quick recovery from power-down. The processor begins executing instructions in as few as 200 CLKIN cycles.
- Support for an externally generated TTL or CMOS processor clock. The external clock can continue running during power-down without affecting the lowest power rating and 200 CLKIN cycle recovery.
- Support for crystal operation includes disabling the oscillator to save power (the processor automatically waits approximately 4096 CLKIN cycles for the crystal oscillator to start or stabilize) and letting the oscillator run to allow 200 CLKIN cycle start up.
- Power-down is initiated by either the power-down pin ($\overline{\mathrm{PWD}}$) or the software power-down force bit. Interrupt support allows an unlimited number of instructions to be executed before optionally powering down. The power-down interrupt also can be used as a nonmaskable, edge-sensitive interrupt.
- Context clear/save control allows the processor to continue where it left off or start with a clean context when leaving the power-down state.
- The RESET pin also can be used to terminate power-down.
- Power-down acknowledge pin indicates when the processor has entered power-down.

Idle

When the ADSP-2189M is in the Idle Mode, the processor waits indefinitely in a low power state until an interrupt occurs. When an unmasked interrupt occurs, it is serviced; execution then continues with the instruction following the IDLE instruction. In Idle mode IDMA, BDMA and autobuffer cycle steals still occur.

Slow Idle

The IDLE instruction is enhanced on the ADSP-2189M to let the processor's internal clock signal be slowed, further reducing power consumption. The reduced clock frequency, a programmable fraction of the normal clock rate, is specified by a selectable divisor given in the IDLE instruction.
The format of the instruction is:

$$
\operatorname{IDLE}(n)
$$

where $n=16,32,64$ or 128 . This instruction keeps the processor fully functional, but operating at the slower clock rate. While it is in this state, the processor's other internal clock signals, such as SCLK, CLKOUT and timer clock, are reduced by the same ratio. The default form of the instruction, when no clock divisor is given, is the standard IDLE instruction.
When the IDLE (n) instruction is used, it effectively slows down the processor's internal clock and thus its response time to incoming interrupts. The one-cycle response time of the standard idle state is increased by n, the clock divisor. When an enabled interrupt is received, the ADSP-2189M will remain in the idle state for up to a maximum of n processor cycles $(n=16,32,64$, or 128) before resuming normal operation.
When the IDLE (n) instruction is used in systems that have an externally generated serial clock (SCLK), the serial clock rate may be faster than the processor's reduced internal clock rate. Under these conditions, interrupts must not be generated at a
faster rate than can be serviced, due to the additional time the processor takes to come out of the idle state (a maximum of n processor cycles).

SYSTEM INTERFACE

Figure 2 shows typical basic system configurations with the ADSP-2189M, two serial devices, a byte-wide EPROM and optional external program and data overlay memories (mode selectable). Programmable Wait-State generation allows the processor connects easily to slow peripheral devices. The ADSP-2189M also provides four external interrupts and two serial ports or six external interrupts and one serial port. Host Memory Mode allows access to the full external data bus, but limits addressing to a single address bit (A0). Additional system peripherals can be added in this mode through the use of external hardware to generate and latch address signals.

Figure 2. ADSP-2189M Basic System Interface

Clock Signals

The ADSP-2189M can be clocked by either a crystal or a TTLcompatible clock signal.
The CLKIN input cannot be halted, changed during operation, or operated below the specified frequency during normal operation. The only exception is while the processor is in the powerdown state. For additional information, refer to Chapter 9, ADSP-2100 Family User's Manual, Third Edition for detailed information on this power-down feature.
If an external clock is used, it should be a TTL-compatible signal running at half the instruction rate. The signal is connected to the processor's CLKIN input. When an external clock is used, the XTAL input must be left unconnected.
The ADSP-2189M uses an input clock with a frequency equal to half the instruction rate; a 37.50 MHz input clock yields a 13.3 ns processor cycle (which is equivalent to 75 MHz). Normally, instructions are executed in a single processor cycle. All device timing is relative to the internal instruction clock rate, which is indicated by the CLKOUT signal when enabled.
Because the ADSP-2189M includes an on-chip oscillator circuit, an external crystal may be used. The crystal should be connected across the CLKIN and XTAL pins, with two capacitors connected as shown in Figure 3. Capacitor values are dependent on crystal type and should be specified by the crystal manufacturer. A parallel-resonant, fundamental frequency, microprocessor-grade crystal should be used.
A clock output (CLKOUT) signal is generated by the processor at the processor's cycle rate. This can be enabled and disabled by the CLKODIS bit in the SPORT0 Autobuffer Control Register.

Figure 3. External Crystal Connections

Reset

The $\overline{\text { RESET }}$ signal initiates a master reset of the ADSP-2189M. The RESET signal must be asserted during the power-up sequence to assure proper initialization. $\overline{\text { RESET }}$ during initial power-up must be held long enough to allow the internal clock to stabilize. If RESET is activated any time after power-up, the clock continues to run and does not require stabilization time.
The power-up sequence is defined as the total time required for the crystal oscillator circuit to stabilize after a valid V_{DD} is applied to the processor and for the internal phase-locked loop (PLL) to lock onto the specific crystal frequency. A minimum of 2000 CLKIN cycles ensures that the PLL has locked but does not include the crystal oscillator start-up time. During this power-up sequence the $\overline{\text { RESET }}$ signal should be held low. On any subsequent resets, the RESET signal must meet the minimum pulsewidth specification, $\mathrm{t}_{\mathrm{RSP}}$.
The $\overline{\text { RESET }}$ input contains some hysteresis; however, if you use an RC circuit to generate your RESET signal, the use of an external Schmidt trigger is recommended.

Table II. ADSP-2189M Modes of Operation

MODE D	MODE C	MODE B	MODE A	Booting Method
X	0	0	0	BDMA feature is used to load the first 32 program memory words from the byte memory space. Program execution is held off until all 32 words have been loaded. Chip is configured in Full Memory Mode.
X	0	1	0	No automatic boot operations occur. Program execution starts at external memory location 0. Chip is configured in Full Memory Mode. BDMA can still be used but the processor does not automatically use or wait for these operations. BDMA feature is used to load the first 32 program memory words from the byte memory space. Program execution is held off until all 32 words have
been loaded. Chip is configured in Host Mode. IACK has active pull-down.				
(REQUIRES ADDITIONAL HARDWARE).				

NOTE
${ }^{1}$ Considered as standard operating settings. Using these configurations allows for easier design and better memory management.

The master reset sets all internal stack pointers to the empty stack condition, masks all interrupts and clears the MSTAT register. When RESET is released, if there is no pending bus request and the chip is configured for booting, the boot-loading sequence is performed. The first instruction is fetched from on-chip program memory location 0×0000 once boot loading completes.

Power Supplies

The ADSP-2189M has separate power supply connections for the internal $\left(\mathrm{V}_{\mathrm{DDINT}}\right)$ and external $\left(\mathrm{V}_{\mathrm{DDEXT}}\right)$ power supplies. The internal supply must meet the 2.5 V requirement. The external supply can be connected to either a 2.5 V or 3.3 V supply. All external supply pins must be connected to the same supply. All input and I/O pins can tolerate input voltages up to 3.6 V regardless of the external supply voltage. This feature provides maximum flexibility in mixing 2.5 V and 3.3 V components.

MODES OF OPERATION

Setting Memory Mode

Memory Mode selection for the ADSP-2189M is made during chip reset through the use of the Mode C pin. This pin is multiplexed with the DSP's PF2 pin, so care must be taken in how the mode selection is made. The two methods for selecting the value of Mode C are active and passive.

Passive Configuration involves the use a pull-up or pull-down resistor connected to the Mode C pin. To minimize power consumption, or if the PF2 pin is to be used as an output in the DSP application, a weak pull-up or pull-down, on the order of $10 \mathrm{k} \Omega$, can be used. This value should be sufficient to pull the pin to the desired level and still allow the pin to operate as a programmable flag output without undue strain on the processor's output driver. For minimum power consumption during powerdown, reconfigure PF2 to be an input, as the pull-up or pulldown will hold the pin in a known state and will not switch.
Active Configuration involves the use of a three-statable external driver connected to the Mode C pin. A driver's output enable should be connected to the DSP's $\overline{\text { RESET }}$ signal such that it only drives the PF2 pin when RESET is active (low). When RESET is deasserted, the driver should three-state, thus allowing full use of the PF2 pin as either an input or output. To minimize power consumption during power-down, configure the programmable flag as an output when connected to a threestated buffer. This ensures that the pin will be held at a constant level and will not oscillate should the three-state driver's level hover around the logic switching point.

$\overline{\text { IACK }}$ Configuration

Mode $\mathrm{D}=0$ and in host mode: $\overline{\mathrm{IACK}}$ is an active, driven signal and cannot be wire OR-ed.

Figure 4. Program Memory

Mode $\mathrm{D}=1$ and in host mode: $\overline{\mathrm{IACK}}$ is an open source and requires an external pull-down, but multiple IACK pins can be wire OR-ed together.

MEMORY ARCHITECTURE

The ADSP-2189M provides a variety of memory and peripheral interface options. The key functional groups are Program Memory, Data Memory, Byte Memory and I/O. Refer to the following figures and tables for PM and DM memory allocations in the ADSP-2189M.

Program Memory

Program Memory, Full Memory Mode is a 24 -bit-wide space for storing both instruction op codes and data. The ADSP-2189M has 32 K words of Program Memory RAM on chip and the capability of accessing up to two 8 K external memory overlay spaces using the external data bus.
Program Memory, Host Mode allows access to all internal memory. External overlay access is limited by a single external address line (A0). External program execution is not available in host mode due to a restricted data bus that is 16 -bits wide only.

Table III. PMOVLAY Bits

PMOVLAY	Memory	A13	A12:0		
$0,4,5$	Internal	Not Applicable	Not Applicable 13 LSBs of Address Between 0x2000 and 0x3FFF		
1	External	0	Overlay 1	l3 LSBs of Address	Between 0x2000
:---					
and 0x3FFF					

Data Memory

Data Memory, Full Memory Mode is a 16-bit-wide space used for the storage of data variables and for memory-mapped control registers. The ADSP-2189M has 48 K words on Data Memory RAM on-chip. Part of this space is used by 32 memorymapped registers. Support also exists for up to two 8K external memory overlay spaces through the external data bus. All internal accesses complete in one cycle. Accesses to external memory are timed using the wait-states specified by the DWAIT register and the wait-state mode bit.

Figure 5. Data Memory Map

Data Memory, Host Mode allows access to all internal memory. External overlay access is limited by a single external address line (A0).

Table IV. DMOVLAY Bits

PMOVLAY	Memory	A13	A12:0
$0,4,5,6,7$	Internal	Not Applicable	Not Applicable 13 LSBs of Address Between 0x2000 and 0x3FFF 13
External	0	Overlay 1 of Address	
Between 0x2000			
and 0x3FFF			

Memory Mapped Registers (New to the ADSP-2189M)

 The ADSP-2189M has three memory mapped registers that differ from other ADSP-21xx Family DSPs. The slight modifications to these registers (Wait-State Control, Programmable Flag and Composite Select Control and System Control) provide the ADSP-2189M's wait-state and BMS control features.

WAIT STATE MODE SELECT (ADSP-2189M)
$0=$ NORMAL MODE (DWAIT, IOWAITO-3 = N WAIT STATES, RANGING FROM 0 TO 7) $1=2 N+1$ MODE (DWAIT, IOWAITO-3 = N WAIT STATES, RANGING FROM 0 TO 15)

Figure 6. Wait-State Control Register (ADSP-2189M)

Figure 7. Programmable Flag and Composite Select Control Register

Figure 8. System Control Register

I/O Space (Full Memory Mode)

The ADSP-2189M supports an additional external memory space called I/O space. This space is designed to support simple connections to peripherals (such as data converters and external registers) or to bus interface ASIC data registers. I/O space supports 2048 locations of 16 -bit-wide data. The lower eleven bits of the external address bus are used; the upper three bits are undefined. Two instructions were added to the core ADSP-2100 Family instruction set to read from and write to I/O memory space. The I/O space also has four dedicated three-bit wait-state registers, IOWAIT0-3, which, in combination with the waitstate mode bit, specify up to 15 wait-states to be automatically generated for each of four regions. The wait-states act on address ranges as shown in Table V.

Table V. Wait-States

Address Range	Wait-State Register
$0 \times 000-0 \times 1 \mathrm{FF}$	IOWAIT0 and Wait-State Mode Select Bit
$0 \times 200-0 \times 3 \mathrm{FF}$	IOWAIT1 and Wait-State Mode Select Bit
$0 \times 400-0 \times 5 \mathrm{FF}$	IOWAIT2 and Wait-State Mode Select Bit
$0 \times 600-0 \times 7 \mathrm{FF}$	IOWAIT3 and Wait-State Mode Select Bit

Composite Memory Select ($\overline{\mathbf{C M S}}$)

The ADSP-2189M has a programmable memory select signal that is useful for generating memory select signals for memories mapped to more than one space. The $\overline{\mathrm{CMS}}$ signal is generated to have the same timing as each of the individual memory select signals ($\overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{IOMS}}$) but can combine their functionality.
When set, each bit in the CMSSEL register causes the $\overline{\text { CMS }}$ signal to be asserted when the selected memory select is asserted. For example, to use a 32 K word memory to act as both program and data memory, set the $\overline{\text { PMS }}$ and $\overline{\text { DMS }}$ bits in the CMSSEL register and use the $\overline{\mathrm{CMS}}$ pin to drive the chip select of the memory, and use either $\overline{\mathrm{DMS}}$ or $\overline{\mathrm{PMS}}$ as the additional address bit.
The $\overline{\mathrm{CMS}}$ pin functions like the other memory select signals, with the same timing and bus request logic. A 1 in the enable bit causes the assertion of the $\overline{\mathrm{CMS}}$ signal at the same time as the selected memory select signal. All enable bits default to 1 at reset, except the $\overline{\mathrm{BMS}}$ bit.
Byte Memory Select ($\overline{\mathbf{B M S}}$)
The ADSP-2189M's BMS disable feature combined with the $\overline{\mathrm{CMS}}$ pin lets you use multiple memories in the byte memory space. For example, an EPROM could be attached to the BMS select, and an SRAM could be connected to $\overline{\mathrm{CMS}}$. Because $\overline{\mathrm{BMS}}$ is enabled at reset, the EPROM would be used for booting. After booting, software could disable $\overline{\mathrm{BMS}}$ and set the $\overline{\mathrm{CMS}}$ signal to respond to $\overline{\mathrm{BMS}}$, enabling the SRAM.

ADSP-2189M

Byte Memory

The byte memory space is a bidirectional, 8-bit-wide, external memory space used to store programs and data. Byte memory is accessed using the BDMA feature. The byte memory space consists of 256 pages, each of which is $16 \mathrm{~K} \times 8$.

The byte memory space on the ADSP-2189M supports read and write operations as well as four different data formats. The byte memory uses data bits 15:8 for data. The byte memory uses data bits $23: 16$ and address bits 13:0 to create a 22 -bit address. This allows up to a $4 \mathrm{meg} \times 8$ (32 megabit) ROM or RAM to be used without glue logic. All byte memory accesses are timed by the BMWAIT register and the wait-state mode bit.

Byte Memory DMA (BDMA, Full Memory Mode)

The Byte memory DMA controller allows loading and storing of program instructions and data using the byte memory space. The BDMA circuit is able to access the byte memory space while the processor is operating normally and steals only one DSP cycle per 8-, 16 - or 24 -bit word transferred.

Figure 9. BDMA Control Register
The BDMA circuit supports four different data formats which are selected by the BTYPE register field. The appropriate number of 8-bit accesses are done from the byte memory space to build the word size selected. Table VI shows the data formats supported by the BDMA circuit.

Table VI. Data Formats

BTYPE	Internal Memory Space	Word Size	Alignment
00	Program Memory	24	Full Word
01	Data Memory	16	Full Word
10	Data Memory	8	MSBs
11	Data Memory	8	LSBs

Unused bits in the 8 -bit data memory formats are filled with 0 s. The BIAD register field is used to specify the starting address for the on-chip memory involved with the transfer. The 14-bit BEAD register specifies the starting address for the external byte memory space. The 8 -bit BMPAGE register specifies the starting page for the external byte memory space. The BDIR register field selects the direction of the transfer. Finally, the 14-bit BWCOUNT register specifies the number of DSP words to transfer and initiates the BDMA circuit transfers.

BDMA accesses can cross page boundaries during sequential addressing. A BDMA interrupt is generated on the completion of the number of transfers specified by the BWCOUNT register.
The BWCOUNT register is updated after each transfer so it can be used to check the status of the transfers. When it reaches zero, the transfers have finished and a BDMA interrupt is generated. The BMPAGE and BEAD registers must not be accessed by the DSP during BDMA operations.

The source or destination of a BDMA transfer will always be on-chip program or data memory.
When the BWCOUNT register is written with a nonzero value the BDMA circuit starts executing byte memory accesses with wait-states set by BMWAIT. These accesses continue until the count reaches zero. When enough accesses have occurred to create a destination word, it is transferred to or from on-chip memory. The transfer takes one DSP cycle. DSP accesses to external memory have priority over BDMA byte memory accesses.

The BDMA Context Reset bit (BCR) controls whether the processor is held off while the BDMA accesses are occurring. Setting the BCR bit to 0 allows the processor to continue operations. Setting the BCR bit to 1 causes the processor to stop execution while the BDMA accesses are occurring, to clear the context of the processor, and start execution at address 0 when the BDMA accesses have completed.
The BDMA overlay bits specify the OVLAY memory blocks to be accessed for internal memory.

The BMWAIT field, which has four bits on ADSP-2189M, allows selection of up to 15 wait-states for BDMA transfers.

Internal Memory DMA Port (IDMA Port; Host Memory

 Mode)The IDMA Port provides an efficient means of communication between a host system and the ADSP-2189M. The port is used to access the on-chip program memory and data memory of the DSP with only one DSP cycle per word overhead. The IDMA port cannot, however, be used to write to the DSP's memorymapped control registers. A typical IDMA transfer process is described as follows:

1. Host starts IDMA transfer.
2. Host checks IACK control line to see if the DSP is busy.
3. Host uses $\overline{I S}$ and IAL control lines to latch either the DMA starting address (IDMAA) or the PM/DM OVLAY selection into the DSP's IDMA control registers. If Bit $15=1$, the value of bits 7:0 represent the IDMA overlay: Bits 14:8 must be set to 0 . If Bit $15=0$, the value of bits 13:0 represent the starting address of internal memory to be accessed and Bit 14 reflects PM or DM for access.
4. Host uses $\overline{\mathrm{IS}}$ and $\overline{\mathrm{IRD}}$ (or $\overline{\mathrm{IWR}}$) to read (or write) DSP internal memory (PM or DM).
5. Host checks $\overline{\text { IACK }}$ line to see if the DSP has completed the previous IDMA operation.
6. Host ends IDMA transfer.

The IDMA port has a 16-bit multiplexed address and data bus and supports 24 -bit program memory. The IDMA port is completely asynchronous and can be written while the ADSP-2189M is operating at full speed.
The DSP memory address is latched and then automatically incremented after each IDMA transaction. An external device can therefore access a block of sequentially addressed memory by specifying only the starting address of the block. This increases throughput as the address does not have to be sent for each memory access.
IDMA Port access occurs in two phases. The first is the IDMA Address Latch cycle. When the acknowledge is asserted, a 14-bit address and 1-bit destination type can be driven onto the bus by an external device. The address specifies an on-chip memory location, the destination type specifies whether it is a DM or PM access. The falling edge of the IDMA address latch signal (IAL) or the missing edge of the IDMA select signal ($\overline{\mathrm{IS}}$) latches this value into the IDMAA register.
Once the address is stored, data can then be either read from, or written to, the ADSP-2189M's on-chip memory. Asserting the select line ($\overline{\mathrm{IS}}$) and the appropriate read or write line ($\overline{\mathrm{IRD}}$ and $\overline{\text { IWR }}$ respectively) signals the ADSP-2189M that a particular transaction is required. In either case, there is a one-processorcycle delay for synchronization. The memory access consumes one additional processor cycle.
Once an access has occurred, the latched address is automatically incremented and another access can occur.
Through the IDMAA register, the DSP can also specify the starting address and data format for DMA operation. Asserting the IDMA port select ($\overline{\mathrm{IS}}$) and address latch enable (IAL) directs the ADSP-2189M to write the address onto the IAD0-14 bus into the IDMA Control Register. If Bit 15 is set to 0, IDMA latches the address. If Bit 15 is set to 1, IDMA latches into the OVLAY register. This register, shown below, is memory mapped at address DM ($0 \times 3 \mathrm{FE} 0$). Note that the latched address (IDMAA) cannot be read back by the host.
Refer to the following figures for more information on IDMA and DMA memory maps.

Figure 10. IDMA Control/OVLAY Registers

Figure 11. Direct Memory Access-PM and DM Memory Maps

Bootstrap Loading (Booting)

The ADSP-2189M has two mechanisms to allow automatic loading of the internal program memory after reset. The method for booting is controlled by the Mode A, B and C configuration bits.
When the MODE pins specify BDMA booting, the ADSP-2189M initiates a BDMA boot sequence when reset is released.
The BDMA interface is set up during reset to the following defaults when BDMA booting is specified: the BDIR, BMPAGE, BIAD and BEAD registers are set to 0 , the BTYPE register is set to 0 to specify program memory 24 -bit words, and the BWCOUNT register is set to 32 . This causes 32 words of onchip program memory to be loaded from byte memory. These 32 words are used to set up the BDMA to load in the remaining program code. The BCR bit is also set to 1 , which causes program execution to be held off until all 32 words are loaded into on-chip program memory. Execution then begins at address 0 .
The ADSP-2100 Family development software (Revision 5.02 and later) fully supports the BDMA booting feature and can generate byte memory space compatible boot code.
The IDLE instruction can also be used to allow the processor to hold off execution while booting continues through the BDMA interface. For BDMA accesses while in Host Mode, the addresses to boot memory must be constructed externally to the ADSP-2189M. The only memory address bit provided by the processor is A0.

IDMA Port Booting

The ADSP-2189M can also boot programs through its Internal DMA port. If Mode $C=1$, Mode $B=0$, and Mode $A=1$, the ADSP-2189M boots from the IDMA port. IDMA feature can load as much on-chip memory as desired. Program execution is held off until on-chip program memory location 0 is written to.

ADSP-2189M

Bus Request and Bus Grant

The ADSP-2189M can relinquish control of the data and address buses to an external device. When the external device requires access to memory, it asserts the bus request $(\overline{\mathrm{BR}})$ signal. If the ADSP-2189M is not performing an external memory access, it responds to the active $\overline{\mathrm{BR}}$ input in the following processor cycle by:

- Three-stating the data and address buses and the $\overline{\text { PMS }}$, $\overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{CMS}}, \overline{\mathrm{IOMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ output drivers,
- Asserting the bus grant $(\overline{\mathrm{BG}})$ signal, and
- Halting program execution.

If Go Mode is enabled, the ADSP-2189M will not halt program execution until it encounters an instruction that requires an external memory access.
If the ADSP-2189M is performing an external memory access when the external device asserts the $\overline{\mathrm{BR}}$ signal, it will not threestate the memory interfaces or assert the $\overline{\mathrm{BG}}$ signal until the processor cycle after the access completes. The instruction does not need to be completed when the bus is granted. If a single instruction requires two external memory accesses, the bus will be granted between the two accesses.
When the $\overline{\mathrm{BR}}$ signal is released, the processor releases the $\overline{\mathrm{BG}}$ signal, reenables the output drivers and continues program execution from the point at which it stopped.
The bus request feature operates at all times, including when the processor is booting and when $\overline{\text { RESET }}$ is active.
The $\overline{\mathrm{BGH}}$ pin is asserted when the ADSP-2189M requires the external bus for a memory or BDMA access, but is stopped.
The other device can release the bus by deasserting bus request. Once the bus is released, the ADSP-2189M deasserts $\overline{\mathrm{BG}}$ and $\overline{\mathrm{BGH}}$ and executes the external memory access.

Flag I/O Pins

The ADSP-2189M has eight general purpose programmable input/output flag pins. They are controlled by two memory mapped registers. The PFTYPE register determines the direction, $1=$ output and $0=$ input. The PFDATA register is used to read and write the values on the pins. Data being read from a pin configured as an input is synchronized to the ADSP-2189M's clock. Bits that are programmed as outputs will read the value being output. The PF pins default to input during reset.
In addition to the programmable flags, the ADSP-2189M has five fixed-mode flags, FLAG_IN, FLAG_OUT, FL0, FL1 and FL2. FL0-FL2 are dedicated output flags. FLAG_IN and FLAG_OUT are available as an alternate configuration of SPORT1.
Note: Pins PF0, PF1, PF2 and PF3 are also used for device configuration during reset.

INSTRUCTION SET DESCRIPTION

The ADSP-2189M assembly language instruction set has an algebraic syntax that was designed for ease of coding and readability. The assembly language, which takes full advantage of the processor's unique architecture, offers the following benefits:

- The algebraic syntax eliminates the need to remember cryptic assembler mnemonics. For example, a typical arithmetic add instruction, such as AR $=\mathrm{AX} 0+\mathrm{AY} 0$, resembles a simple equation.
- Every instruction assembles into a single, 24-bit word that can execute in a single instruction cycle.
- The syntax is a superset ADSP-2100 Family assembly language and is completely source-and-object-code-compatible with other family members. Programs may need to be relocated to utilize on-chip memory and conform to the ADSP-2189M's interrupt vector and reset vector map.
- Sixteen condition codes are available. For conditional jump, call, return, or arithmetic instructions, the condition can be checked and the operation executed in the same instruction cycle.
- Multifunction instructions allow parallel execution of an arithmetic instruction with up to two fetches or one write to processor memory space during a single instruction cycle.

DESIGNING AN EZ-ICE-COMPATIBLE SYSTEM

The ADSP-2189M has on-chip emulation support and an ICEPort, a special set of pins that interface to the EZ-ICE. These features allow in-circuit emulation without replacing the target system processor by using only a 14 -pin connection from the target system to the EZ-ICE. Target systems must have a 14 -pin connector to accept the EZ-ICE's in-circuit probe, a 14-pin plug.
Issuing the chip reset command during emulation causes the DSP to perform a full chip reset, including a reset of its memory mode. Therefore, it is vital that the mode pins are set correctly PRIOR to issuing a chip reset command from the emulator user interface. If you are using a passive method of maintaining mode information (as discussed in Setting Memory Modes), then it does not matter that the mode information is latched by an emulator reset. However, if using the RESET pin as a method of setting the value of the mode pins, the effects of an emulator reset must be taken into consideration.
One method of ensuring that the values located on the mode pins are those desired is to construct a circuit like the one shown in Figure 12. This circuit forces the value located on the Mode A pin to logic high; regardless if it latched via the RESET or ERESET pin.

Figure 12. Mode A Pin/EZ-ICE Circuit
See the ADSP-2100 Family EZ-Tools data sheet for complete information on ICE products.

The ICE-Port interface consists of the following ADSP-2189M pins: $\overline{\mathrm{EBR}}, \overline{\mathrm{EINT}}, \mathrm{EE}, \overline{\mathrm{EBG}}, \mathrm{ECLK}, \overline{\mathrm{ERESET}}, \mathrm{ELIN}, \overline{\mathrm{EMS}}$, and ELOUT.
These ADSP-2189M pins must be connected only to the EZICE connector in the target system. These pins have no function except during emulation, and do not require pull-up or pulldown resistors. The traces for these signals between the ADSP2189 M and the connector must be kept as short as possible, no longer than three inches.
The following pins are also used by the EZ-ICE: $\overline{\mathrm{BR}}, \overline{\mathrm{BG}}$, RESET, and GND.
The EZ-ICE uses the EE (emulator enable) signal to take control of the ADSP-2189M in the target system. This causes the processor to use its $\overline{\mathrm{ERESET}}, \overline{\mathrm{EBR}}$, and $\overline{\mathrm{EBG}}$ pins instead of the $\overline{\mathrm{RESET}}, \overline{\mathrm{BR}}$, and $\overline{\mathrm{BG}}$ pins. The $\overline{\mathrm{BG}}$ output is three-stated. These signals do not need to be jumper-isolated in your system.
The EZ-ICE connects to your target system via a ribbon cable and a 14 -pin female plug. The female plug is plugged onto the 14-pin connector (a pin strip header) on the target board.

Target Board Connector for EZ-ICE Probe

The EZ-ICE connector (a standard pin strip header) is shown in Figure 13. You must add this connector to your target board design if you intend to use the EZ-ICE. Be sure to allow enough room in your system to fit the EZ-ICE probe onto the 14-pin connector.

Figure 13. Target Board Connector for EZ-ICE
The 14-pin, 2-row pin strip header is keyed at the Pin 7 loca-tion-you must remove Pin 7 from the header. The pins must be 0.025 inch square and at least 0.20 inch in length. Pin spacing should be 0.1×0.1 inches. The pin strip header must have at least 0.15 inch clearance on all sides to accept the EZ-ICE probe plug.
Pin strip headers are available from vendors such as 3 M , McKenzie, and Samtec.

Target Memory Interface

For your target system to be compatible with the EZ-ICE emulator, it must comply with the memory interface guidelines listed below.
PM, DM, BM, IOM, and CM
Design your Program Memory (PM), Data Memory (DM), Byte Memory (BM), I/O Memory (IOM), and Composite Memory (CM) external interfaces to comply with worst case device timing requirements and switching characteristics as specified in this data sheet. The performance of the EZ-ICE may approach published worst case specification for some memory access timing requirements and switching characteristics.
Note: If your target does not meet the worst case chip specification for memory access parameters, you may not be able to emulate your circuitry at the desired CLKIN frequency. Depending on the severity of the specification violation, you may have trouble manufacturing your system as DSP components statistically vary in switching characteristic and timing requirements within published limits.
Restriction: All memory strobe signals on the ADSP-2189M $(\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{CMS}}$, and $\overline{\mathrm{IOMS}})$ used in your target system must have $10 \mathrm{k} \Omega$ pull-up resistors connected when the EZ-ICE is being used. The pull-up resistors are necessary because there are no internal pull-ups to guarantee their state during prolonged three-state conditions resulting from typical EZ-ICE debugging sessions. These resistors may be removed at your option when the EZ-ICE is not being used.

Target System Interface Signals

When the EZ-ICE board is installed, the performance on some system signals change. Design your system to be compatible with the following system interface signal changes introduced by the EZ-ICE board:

- EZ-ICE emulation introduces an 8 ns propagation delay between your target circuitry and the DSP on the $\overline{\text { RESET }}$ signal.
- EZ-ICE emulation introduces an 8 ns propagation delay between your target circuitry and the DSP on the $\overline{\mathrm{BR}}$ signal.
- EZ-ICE emulation ignores $\overline{\text { RESET }}$ and $\overline{\mathrm{BR}}$ when singlestepping.
- EZ-ICE emulation ignores $\overline{\mathrm{RESET}}$ and $\overline{\mathrm{BR}}$ when in Emulator Space (DSP halted).
- EZ-ICE emulation ignores the state of target $\overline{\mathrm{BR}}$ in certain modes. As a result, the target system may take control of the DSP's external memory bus only if bus grant $(\overline{\mathrm{BG}})$ is asserted by the EZ-ICE board's DSP.

	K Grade		B Grade		
Parameter	Min	Max	Min	Max	Unit
$\mathrm{V}_{\text {DDINT }}$	2.37	2.63	2.25	2.75	V
$\mathrm{~V}_{\mathrm{DDEXT}}$	2.37	3.6	2.25	3.6	V
$\mathrm{~V}_{\text {INPUT }}{ }^{1}$	$\mathrm{~V}_{\text {IL }}=-0.3$	$\mathrm{~V}_{\text {IH }}=3.6$	-0.03	3.6	V
$\mathrm{~T}_{\text {AMB }}$	0	+70	-40	+85	${ }^{\circ} \mathrm{C}$

NOTES
${ }^{1}$ The ADSP-2189M is 3.3 V tolerant (always accepts up to 3.6 Volt max V_{IH}, but voltage compliance (on outputs, V_{OH}) depends on the input $\mathrm{V}_{\mathrm{DDEXT}}$; because V_{OH} $(\max) \approx \mathrm{V}_{\text {DDEXT }}(\max)$. This applies to Bidirectional pins (D0-D23, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A1-A13, PF0-PF7) and Input Only pins (CLKIN, $\overline{\text { RESET }}, \overline{\mathrm{BR}}, \mathrm{DR} 0, \mathrm{DR} 1, \overline{\mathrm{PWD}})$.

ELECTRICAL CHARACTERISTICS

Parameter	Test Conditions	K/B Grades			Unit
		Min	Typ	Max	
V_{IH}, Hi-Level Input Voltage ${ }^{1,2}$	(a) $\mathrm{V}_{\text {DDINT }}=\max$	1.5			V
V_{IH}, Hi-Level CLKIN Voltage	(a) $\mathrm{V}_{\text {DDINT }}=\max$	2.0			V
$\mathrm{V}_{\text {IL }}$, Lo-Level Input Voltage ${ }^{1,3}$	(a) $\mathrm{V}_{\text {DDINT }}=\mathrm{min}$			0.6	V
V_{OH}, Hi-Level Output Voltage ${ }^{1,4,5}$	(a) $\mathrm{V}_{\mathrm{DDEXT}}=\mathrm{min}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	2.0			V
	(a) $\mathrm{V}_{\mathrm{DDEXT}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	2.4			V
	(a) $\mathrm{V}_{\mathrm{DDEXT}}=\min , \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}^{6}$	$\mathrm{V}_{\text {DDE }}$			V
$\mathrm{V}_{\text {OL }}$, Lo-Level Output Voltage ${ }^{\text {1,4,5 }}$	(a) $\mathrm{V}_{\text {DDEXT }}=\mathrm{min}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$			0.4	V
I_{IH}, Hi-Level Input Current ${ }^{3}$	(a) $\mathrm{V}_{\mathrm{DDINT}}=\max , \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$			10	$\mu \mathrm{A}$
I_{IL}, Lo-Level Input Current ${ }^{3}$	(a) $\mathrm{V}_{\text {DDINT }}=\max , \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzH }}$, Three-State Leakage Current ${ }^{7}$	(a) $\mathrm{V}_{\mathrm{DDINT}}=\max , \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}^{8}$			10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$, Three-State Leakage Current ${ }^{7}$	(a) $\mathrm{V}_{\text {DDINT }}=\mathrm{max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}^{8}$			10	$\mu \mathrm{A}$
I_{DD}, Supply Current (Idle) ${ }^{9}$	(a) $\mathrm{V}_{\mathrm{DDINT}}=2.5, \mathrm{t}_{\mathrm{CK}}=15 \mathrm{~ns}$		9		mA
I_{DD}, Supply Current (Idle) ${ }^{9}$	(a) $\mathrm{V}_{\mathrm{DDINT}}=2.5, \mathrm{t}_{\mathrm{CK}}=13.3 \mathrm{~ns}$		10		mA
I_{DD}, Supply Current (Dynamic) ${ }^{10}$	$\begin{aligned} & \text { (a) } \mathrm{V}_{\mathrm{DDINT}}=2.5, \mathrm{t}_{\mathrm{CK}}=15 \mathrm{~ns}^{11}, \\ & \mathrm{~T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C} \end{aligned}$		32		mA
I_{DD}, Supply Current (Dynamic) ${ }^{10}$	$\begin{aligned} & \text { @ } V_{\text {DDINT }}=2.5, \mathrm{t}_{\mathrm{CK}}=13.3 \mathrm{~ns}^{11}, \\ & \mathrm{~T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C} \end{aligned}$		36		mA
I_{DD}, Supply Current (Power-Down) ${ }^{12,15}$	Lowest Power Mode		150		$\mu \mathrm{A}$
C_{I}, Input Pin Capacitance ${ }^{3,6,13}$	$\text { @ } \begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C} \end{aligned}$			8	pF
C_{O}, Output Pin Capacitance ${ }^{6,7,12,14}$	$\text { (@) } \begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C} \end{aligned}$			8	pF

[^0]ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

	Value	
Parameter	Min	Max
Internal Supply Voltage $\left(\mathrm{V}_{\text {DDINT }}\right)$	-0.3 V	+3.0 V
External Supply Voltage $\left(\mathrm{V}_{\text {DDEXT }}\right)$	-0.3 V	+4.6 V
Input Voltage 2	-0.5 V	+4.6 V
Output Voltage Swing 3	-0.5 V	$\mathrm{~V}_{\text {DDEXT }}+0.5 \mathrm{~V}$
Operating Temperature Range (Ambient)	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$
Lead Temperature (5 sec) LQFP		$+280^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Applies to Bidirectional pins (D0-D23, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A1-A13, PF0-PF7) and Input only pins (CLKIN, $\overline{\mathrm{RESET}}, \overline{\mathrm{BR}}, \mathrm{DR} 0$, DR1, PWD).
${ }^{3}$ Applies to Output pins ($\overline{\mathrm{BG}}, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{IOMS}}, \overline{\mathrm{CMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PWDACK}}$, A0, DT0, DT1, CLKOUT, FL2-0, $\overline{\mathrm{BGH}}$).

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADSP-2189M features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TIMING PARAMETERS

GENERAL NOTES

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add up parameters to derive longer times.

TIMING NOTES

Switching characteristics specify how the processor changes its signals. You have no control over this timing-circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

MEMORY TIMING SPECIFICATIONS

The table below shows common memory device specifications and the corresponding ADSP-2189M timing parameters, for your convenience.

Memory Device Specification	Parameter	Timing Parameter Definition ${ }^{1}$
Address Setup to Write Start	$\mathrm{t}_{\text {ASW }}$	A0-A13, $\overline{x M S}$ Setup before WR Low
Address Setup to Write End	$\mathrm{t}_{\text {AW }}$	A0-A13, $\overline{x M S}$ Setup before WR Deasserted
Address Hold Time	$\mathrm{t}_{\text {wRA }}$	A0-A13, $\overline{x M S}$ Hold before WR Low
Data Setup Time	t_{DW}	Data Setup before $\overline{\mathrm{WR}}$ High
Data Hold Time	t_{DH}	Data Hold after $\overline{\mathrm{WR}}$ High
$\overline{\mathrm{OE}}$ to Data Valid	$\mathrm{t}_{\text {RDD }}$	$\overline{\mathrm{RD}}$ Low to Data Valid
Address Access Time	$\mathrm{t}_{\text {AA }}$	A0-A13, $\overline{\mathrm{xMS}}$ to Data Valid
$\begin{aligned} & \mathrm{NOTE} \\ & { }_{1} \mathrm{xMS} \\ & =\overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BM}} \end{aligned}$	$\overline{\mathrm{S}}$ or $\overline{\mathrm{IOMS}}$.	

ADSP-2189M

FREQUENCY DEPENDENCY FOR TIMING SPECIFICATIONS

t_{CK} is defined as $0.5 \mathrm{t}_{\mathrm{CKI}}$. The ADSP- 2189 M uses an input clock with a frequency equal to half the instruction rate: a 37.50 MHz input clock (which is equivalent to 28 ns) yields a 13 ns processor cycle (equivalent to 75 MHz). t_{CK} values within the range of $0.5 \mathrm{t}_{\mathrm{CKI}}$ period should be substituted for all relevant timing parameters to obtain the specification value.
Example: $\mathrm{t}_{\mathrm{CKH}}=0.5 \mathrm{t}_{\mathrm{CK}}-7 \mathrm{~ns}=0.5(15 \mathrm{~ns})-7 \mathrm{~ns}=0.5 \mathrm{~ns}$

ENVIRONMENTAL CONDITIONS ${ }^{1}$

Rating Description	Symbol	Value
Thermal Resistance		
(Case-to-Ambient)	θ_{CA}	$48^{\circ} \mathrm{C} / \mathrm{W}$
(Junction-to-Ambient)	θ_{JA}	$50^{\circ} \mathrm{C} / \mathrm{W}$
(Junction-to-Case)	θ_{JC}	$2^{\circ} \mathrm{C} / \mathrm{W}$

NOTE

${ }^{1}$ Where the ambient temperature rating ($\mathrm{T}_{\mathrm{AMB}}$) is:
$\mathrm{T}_{\mathrm{AMB}}=\mathrm{T}_{\mathrm{CASE}}-\left(\mathrm{PD} \times \theta_{\mathrm{CA}}\right)$
$\mathrm{T}_{\text {CASE }}=$ Case temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{PD}=$ Power dissipation in W .

POWER DISSIPATION

To determine total power dissipation in a specific application, the following equation should be applied for each output:

$$
C \times V_{D D}^{2} \times f
$$

$C=$ load capacitance, $f=$ output switching frequency.

Example:

In an application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:

Assumptions:

- External data memory is accessed every cycle with 50% of the address pins switching.
- External data memory writes occur every other cycle with 50% of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at $\mathrm{V}_{\mathrm{DDEXT}}=3.3 \mathrm{~V}$ and $\mathrm{t}_{\mathrm{CK}}=15 \mathrm{~ns}$.

Total Power Dissipation $=P_{I N T}+\left(C \times V_{D D E X T}{ }^{2} \times f\right)$
$P_{I N T}=$ internal power dissipation from Power vs. Frequency graph (Figure 15).
$\left(\mathrm{C} \times \mathrm{V}_{\text {DDEXT }^{2}}{ }^{2} \times \mathrm{f}\right)$ is calculated for each output:

Parameters	\# of Pins	\times \mathbf{C}	$\mathbf{V}_{\text {DDEXT }^{2}}$	\times \mathbf{f}	$\mathbf{P D}$
Address, $\overline{\mathrm{DMS}}$	8	10 pF	$3.3^{2} \mathrm{~V}$	33.3 MHz	29.0 mW
Data Output, $\overline{\mathrm{WR}}$	9	10 pF	$3.3^{2} \mathrm{~V}$	16.67 MHz	16.3 mW
$\overline{\mathrm{RD}}$	1	10 pF	$3.3^{2} \mathrm{~V}$	16.67 MHz	1.8 mW
CLKOUT	1	10 pF	$3.3^{2} \mathrm{~V}$	33.3 MHz	$\frac{3.6 \mathrm{~mW}}{50.7 \mathrm{~mW}}$

Total power dissipation for this example is $\mathrm{P}_{\mathrm{INT}}+50.7 \mathrm{~mW}$.

Output Drive Currents

Figure 14 shows typical I-V characteristics for the output drivers on the ADSP-2189M. The curves represent the current drive capability of the output drivers as a function of output voltage.

Figure 14. Typical Output Driver Characteristics

POWER, IDLE n MODES ${ }^{2}$

VALID FOR ALL TEMPERATURE GRADES.
${ }^{1}$ POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.
${ }^{2}$ TYPICAL POWER DISSIPATION AT 2.5 V V WHERE SPECIFIED.
${ }^{3}{ }^{3}$ DD MEASUREMENT TAKEN WITH ALL INSTRUCTIONS EXECUTING FROM INTERNAL MEMORY. 50\% OF THE INSTRUCTIONS ARE MULTIFUNCTION (TYPES 1, 4, 5, 12, 13, 14), 30\% ARE TYPE 2 AND TYPE 6, AND 20\% ARE IDLE INSTRUCTIONS.
${ }^{4}$ IDLE REFERS TO ADSP-2189M STATE OF OPERATION DURING EXECUTION OF IDLE INSTRUCTION. DEASSERTED PINS ARE DRIVEN TO EITHER $V_{D D}$ OR GND.

Figure 15. Power vs. Frequency

CAPACITIVE LOADING

Figure 16 and Figure 17 show the capacitive loading characteristics of the ADSP-2189M.

Figure 16. Typical Output Rise Time vs. Load Capacitance, C_{L} (at Maximum Ambient Operating Temperature)

Figure 17. Typical Output Valid Delay or Hold vs. Load Capacitance, C_{L} (at Maximum Ambient Operating Temperature)

Figure 18. IDD Power-Down

ADSP-2189M

TEST CONDITIONS

Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time ($t_{\text {DIS }}$) is the difference of $t_{\text {MEASURED }}$ and $t_{\text {DECAY }}$, as shown in the Output Enable/Disable diagram. The time is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.
The decay time, $t_{\text {DECAY }}$, is dependent on the capacitive load, C_{L}, and the current load, i_{L}, on the output pin. It can be approximated by the following equation:

$$
t_{D E C A Y}=\frac{C_{L} \times 0.5 \mathrm{~V}}{i_{L}}
$$

from which

$$
t_{D I S}=t_{\text {MEASURED }}-t_{\text {DECAY }}
$$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Figure 19. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high impedance state to when they start
driving. The output enable time ($\mathrm{t}_{\mathrm{ENA}}$) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in the Output Enable/Disable diagram. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5 V .

Figure 20. Output Enable/Disable

Figure 21. Equivalent Device Loading for AC Measurements (Including All Fixtures)

TIMING PARAMETERS

Parameter		Min	Max	Unit
Clock Signals and Reset				
Timing Requirements:				
$\mathrm{t}_{\mathrm{CKI}}$	CLKIN Period	26.6	80	ns
$\mathrm{t}_{\text {CKIL }}$	CLKIN Width Low	13		ns
$\mathrm{t}_{\text {CKIH }}$	CLKIN Width High	13		ns
Switching Characteristics:				
$\mathrm{t}_{\mathrm{CKL}}$	CLKOUT Width Low	$0.5 \mathrm{t}_{\mathrm{CK}}-2$		ns
$\mathrm{t}_{\text {CKH }}$	CLKOUT Width High	$0.5 \mathrm{t}_{\mathrm{CK}}-2$		ns
$\mathrm{t}_{\mathrm{CKOH}}$	CLKIN High to CLKOUT High	0	13	ns
Control Signals				
Timing Requirements:				
$\mathrm{t}_{\text {RSP }}$	RESET Width Low	$5 \mathrm{t}_{\mathrm{CK}}{ }^{1}$		ns
$\mathrm{t}_{\text {MS }}$	Mode Setup before $\overline{\text { RESET }}$ High			ns
t_{MH}	Mode Hold after RESET High	5		ns

NOTE

${ }^{1}$ Applies after power-up sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal oscillator start-up time).

*PF3 IS MODE D, PF2 IS MODE C, PFO IS MODE A
Figure 22. Clock Signals

Parameter		Min	Max	Unit
Interrupts and Flags				
Timing Requirements:				
$\mathrm{t}_{\text {IFS }}$	$\overline{\overline{\text { IRQx}}}$, FI, or PFx Setup before CLKOUT Low ${ }^{1,2,3,4}$	$0.25 \mathrm{t}_{\mathrm{CK}}+10$		ns
$\mathrm{t}_{\text {IFH }}$	$\overline{\text { IRQx }}$, FI, or PFx Hold after CLKOUT High ${ }^{\text {1, 2, 3, }}$	$0.25 \mathrm{t}_{\mathrm{CK}}$		ns
Switching Characteristics:				
$\mathrm{t}_{\mathrm{FOH}}$	Flag Output Hold after CLKOUT Low ${ }^{5}$	$0.5 \mathrm{t}_{\mathrm{CK}}-5$		ns
$\mathrm{t}_{\text {FOD }}$	Flag Output Delay from CLKOUT Low ${ }^{5}$		$0.5 \mathrm{t}_{\mathrm{CK}}+4$	ns

NOTES

${ }^{1}$ If $\overline{\text { IRQx }}$ and FI inputs meet $\mathrm{t}_{\mathrm{IFS}}$ and $\mathrm{t}_{\mathrm{IFH}}$ setup/hold requirements, they will be recognized during the current clock cycle; otherwise the signals will be recognized on the following cycle. (Refer to Interrupt Controller Operation in the Program Control chapter of the ADSP-2100 Family User's Manual, Third Edition, for further information on interrupt servicing.)
${ }^{2}$ Edge-sensitive interrupts require pulsewidths greater than 10 ns ; level-sensitive interrupts must be held low until serviced.
${ }^{3} \overline{\mathrm{IRQx}}=\overline{\mathrm{IRQ} 0}, \overline{\overline{\mathrm{IRQ1}}}, \overline{\mathrm{IRQ} 2}, \overline{\mathrm{IRQL} 0}, \overline{\overline{\mathrm{IRQL1}}}, \overline{\mathrm{IRQLE}}$.
${ }^{4} \mathrm{PFx}=\mathrm{PF} 0, \mathrm{PF} 1, \mathrm{PF} 2, \mathrm{PF} 3, \mathrm{PF} 4, \mathrm{PF} 5, \mathrm{PF} 6, \mathrm{PF} 7$.
${ }^{5}$ Flag Outputs $=$ PFx, FL0, FL1, FL2, Flag_out4.

Figure 23. Interrupts and Flags

ADSP-2189M

Parameter		Min	Max	Unit
Bus Request-Bus Grant Timing Requirements:				
t_{BH}	$\overline{\text { BR }}$ Hold after CLKOUT High ${ }^{1}$	0.25 t		ns
$\mathrm{t}_{\text {BS }}$	$\overline{\mathrm{BR}}$ Setup before CLKOUT Low ${ }^{1}$	0.25 t		ns
Switching Characteristics:				
$\mathrm{t}_{\text {SD }}$	CLKOUT High to $\overline{\mathrm{xMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Disable		$0.25 \mathrm{t}_{\mathrm{CK}}+8$	ns
$\mathrm{t}_{\text {SDB }}$	$\overline{\mathrm{xMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Disable to $\overline{\mathrm{BG}}$ Low	0		ns
$\mathrm{t}_{\text {SE }}$	$\overline{\mathrm{BG}}$ High to $\overline{\mathrm{xMS}}, \overline{\mathrm{RD}}$, WR Enable	0		ns
$\mathrm{t}_{\text {SEC }}$	xMS $, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Enable to CLKOUT High	0.25 t		ns
$\mathrm{t}_{\text {SDBH }}$	$\overline{\mathrm{xMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Disable to $\overline{\mathrm{BGH}}$ Low 2	0		ns
$\mathrm{t}_{\text {SEH }}$	$\overline{\mathrm{BGH}}$ High to $\overline{\mathrm{xMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Enable 2	0		ns

NOTES
$\overline{\mathrm{xMS}}=\overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{CMS}}, \overline{\mathrm{IOMS}}, \overline{\mathrm{BMS}}$
${ }^{1} \overline{\mathrm{BR}}$ is an asynchronous signal. If $\overline{\mathrm{BR}}$ meets the setup/hold requirements, it will be recognized during the current clock cycle; otherwise the signal will be recognized on the following cycle. Refer to the ADSP-2100 Family User's Manual, Third Edition, for $\overline{\mathrm{BR}} / \overline{\mathrm{BG}}$ cycle relationships.
${ }^{2} \overline{\mathrm{BGH}}$ is asserted when the bus is granted and the processor or BDMA requires control of the bus to continue.

Figure 24. Bus Request-Bus Grant

Parameter		Min	Max	Unit
Memory Read				
Timing Requirements:				
$\mathrm{t}_{\text {RDD }}$	$\overline{\mathrm{RD}}$ Low to Data Valid		$0.5 \mathrm{t}_{\mathrm{CK}}-5+\mathrm{w}$	ns
t_{AA}	A0-A13, xMS to Data Valid		$0.75 \mathrm{t}_{\mathrm{CK}}-6+\mathrm{w}$	ns
$\mathrm{t}_{\text {RDH }}$	Data Hold from $\overline{\mathrm{RD}}$ High	0		ns
Switching Characteristics:				
t_{RP}	$\overline{\mathrm{RD}}$ Pulsewidth	$0.5 \mathrm{t}_{\mathrm{CK}}-3+\mathrm{w}$		ns
$\mathrm{t}_{\text {CRD }}$	CLKOUT High to $\overline{\mathrm{RD}}$ Low	$0.25 \mathrm{t}_{\mathrm{CK}}-2$	$0.25 \mathrm{t}_{\mathrm{CK}}+4$	ns
$\mathrm{t}_{\text {ASR }}$	A0-A13, $\overline{\mathrm{xMS}}$ Setup before $\overline{\mathrm{RD}}$ Low	$0.25 \mathrm{t}_{\mathrm{CK}}-3$		ns
$\mathrm{t}_{\text {RDA }}$	A0-A13, $\overline{x M S}$ Hold after $\overline{\mathrm{RD}}$ Deasserted	$0.25 \mathrm{t}_{\mathrm{CK}}-3$		ns
$\underline{t_{\text {RWR }}}$	$\overline{\mathrm{RD}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	$0.5 \mathrm{t}_{\mathrm{CK}}-3$		ns

$\mathrm{w}=$ wait-states $\times \mathrm{t}_{\mathrm{CK}}$.
$\overline{\mathrm{xMS}}=\overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{CMS}}, \overline{\mathrm{IOMS}}, \overline{\mathrm{BMS}}$.

Figure 25. Memory Read

Parameter		Min	Max	Unit
Memory Write				
Switching Characteristics:				
t_{DW}	Data Setup before $\overline{\mathrm{WR}}$ High	$0.5 \mathrm{t}^{\text {c }}$		ns
t_{DH}	Data Hold after WR High	0.25		ns
$\mathrm{t}_{\text {wP }}$	WR Pulsewidth	$0.5 \mathrm{t}_{\mathrm{t}}$		ns
$\mathrm{t}_{\text {WDE }}$	WR Low to Data Enabled	0		ns
$\mathrm{t}_{\text {ASW }}$	A0-A13, $\overline{\text { xMS }}$ Setup before $\overline{\mathrm{WR}}$ Low	0.25		ns
$\mathrm{t}_{\mathrm{DDR}}$	Data Disable before $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ Low	0.25		ns
$\mathrm{t}_{\text {CWR }}$	CLKOUT High to $\overline{\mathrm{WR}}$ Low	0.25	$0.25 \mathrm{t}_{\mathrm{CK}}+4$	ns
$\mathrm{t}_{\text {AW }}$	A0-A13, $\overline{\mathrm{xMS}}$, Setup before $\overline{\mathrm{WR}}$ Deasserted	0.75		ns
$\mathrm{t}_{\text {WRA }}$	A0-A13, xMS Hold after WR Deasserted	0.25		ns
$\mathrm{t}_{\mathrm{WWWR}}$	$\overline{\mathrm{WR}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low	$0.5 \mathrm{t}_{\text {c }}$		ns

$\mathrm{w}=$ wait-states $\times \mathrm{t}_{\mathrm{CK}}$.
$\overline{\mathrm{xMS}}=\overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{CMS}}, \overline{\mathrm{IOMS}}, \overline{\mathrm{BMS}}$.

Figure 26. Memory Write

Parameter		Min	Max	Unit
Serial Ports				
Timing Requirements:				
$\mathrm{t}_{\text {SCK }}$	SCLK Period	26.67		ns
$\mathrm{t}_{\text {SCS }}$	DR/TFS/RFS Setup before SCLK Low	4		ns
$\mathrm{t}_{\text {SCH }}$	DR/TFS/RFS Hold after SCLK Low	7		ns
$\mathrm{t}_{\text {SCP }}$	SCLKIN Width	12		ns
Switching Characteristics:				
t_{CC}	CLKOUT High to SCLKOUT	$0.25 \mathrm{t}_{\mathrm{CK}}$	$0.25 \mathrm{t}_{\mathrm{CK}}+6$	ns
$\mathrm{t}_{\text {SCDE }}$	SCLK High to DT Enable	0		ns
$\mathrm{t}_{\text {SCDV }}$	SCLK High to DT Valid		12	ns
$\mathrm{t}_{\text {RH }}$	TFS/RFS Out $^{\text {Hold after SCLK High }}$	0		ns
t_{RD}	TFS/RFS ${ }_{\text {Out }}$ Delay from SCLK High		12	ns
$\mathrm{t}_{\text {SCDH }}$	DT Hold after SCLK High	0		ns
$\mathrm{t}_{\text {TDE }}$	TFS (Alt) to DT Enable	0		ns
$\mathrm{t}_{\text {TDV }}$	TFS (Alt) to DT Valid		12	ns
$\mathrm{t}_{\text {SCDD }}$	SCLK High to DT Disable		12	ns
$\mathrm{t}_{\text {RDV }}$	RFS (Multichannel, Frame Delay Zero) to DT Valid		12	ns

Figure 27. Serial Ports

Parameter	Min	Max	Unit
IDMA Address Latch			
Timing Requirements:	Duration of Address Latch ${ }^{1,2}$		
$\mathrm{t}_{\text {IALP }}$	IAD15-0 Address Setup before Address Latch End ${ }^{2}$	10	ns
$\mathrm{t}_{\text {IASU }}$	IAD15-0 Address Hold after Address Latch End ${ }^{2}$	3	ns
$\mathrm{t}_{\text {IAH }}$	IACK Low before Start of Address Latch ${ }^{2,3}$	ns	
$\mathrm{t}_{\text {IRA }}$	Start of Write or Read after Address Latch End ${ }^{2,3}$	0	ns
$\mathrm{t}_{\text {IALS }}$	Address Latch Start after Address Latch End ${ }^{1,2}$	3	ns
$\mathrm{t}_{\text {IALD }}$		2	ns

NOTES
${ }^{1}$ Start of Address Latch $=\overline{\mathrm{IS}}$ Low and IAL High.
${ }^{2}$ End of Address Latch $=\overline{\text { IS }}$ High or IAL Low.
${ }^{3}$ Start of Write or Read = $\overline{\text { IS }}$ Low and $\overline{\text { IWR }}$ Low or $\overline{\text { IRD }}$ Low.

Figure 28. IDMA Address Latch

Parameter		Min	Max	Unit
IDMA Write, Short Write Cycle				
Timing Requirements:				
$\mathrm{t}_{\text {IKW }}$	$\overline{\text { IACK }}$ Low before Start of Write ${ }^{1}$	0		ns
$\mathrm{t}_{\text {IWP }}$	Duration of Write ${ }^{1,2}$	10		ns
$\mathrm{t}_{\text {IDSU }}$	IAD15-0 Data Setup before End of Write ${ }^{2,3,4}$	3		ns
$\mathrm{t}_{\text {IDH }}$	IAD15-0 Data Hold after End of Write ${ }^{2,3,4}$	2		ns
Switching Characteristics:				
$\mathrm{t}_{\text {IKHW }}$	Start of Write to $\overline{\text { IACK }}$ High		10	ns

NOTES
${ }^{1}$ Start of Write $=\overline{\mathrm{IS}}$ Low and $\overline{\text { IWR }}$ Low
${ }^{2}$ End of Write $=\overline{\text { IS }}$ High or $\overline{\text { IWR }}$ High.
${ }^{3}$ If Write Pulse ends before $\overline{\text { IACK }}$ Low, use specifications $\mathrm{t}_{\mathrm{IDSU}}, \mathrm{t}_{\mathrm{IDH}}$.
${ }^{4}$ If Write Pulse ends after $\overline{\text { IACK }}$ Low, use specifications $\mathrm{t}_{\text {IKSU }}$, $\mathrm{t}_{\text {IKH. }}$

Figure 29. IDMA Write, Short Write Cycle

Parameter		Min	Max	Unit
IDMA Write, Long Write Cycle				
Timing Requirements:				
$\mathrm{t}_{\text {IKW }}$	$\overline{\text { IACK }}$ Low before Start of Write ${ }^{1}$	0		ns
$\mathrm{t}_{\text {IKSU }}$	IAD15-0 Data Setup before End of Write ${ }^{2,3,4}$	$0.5 \mathrm{t}_{\mathrm{CK}}+5$		ns
$\mathrm{t}_{\text {IKH }}$	IAD15-0 Data Hold after End of Write ${ }^{2,3,4}$	0		ns
Switching Characteristics:		$1.5 \mathrm{t}_{\mathrm{CK}}$	10	
$\mathrm{t}_{\text {IKLW }}$	Start of Write to $\overline{\text { IACK }}$ Low 4			ns
$\mathrm{t}_{\text {IKHW }}$	Start of Write to IACK High			ns

NOTES
${ }^{1}$ Start of Write $=\overline{\text { IS }}$ Low and $\overline{\text { IWR }}$ Low.
${ }^{2}$ If Write Pulse ends before $\overline{\text { IACK }}$ Low, use specifications $\mathrm{t}_{\text {IDSU }}, \mathrm{t}_{\mathrm{IDH}}$.
${ }^{3}$ If Write Pulse ends after $\overline{\text { IACK }}$ Low, use specifications $\mathrm{t}_{\mathrm{IKSU}}, \mathrm{t}_{\mathrm{IKH}}$.
${ }^{4}$ This is the earliest time for $\overline{\text { IACK }}$ Low from Start of Write. For IDMA Write cycle relationships, please refer to the ADSP-2100 Family User's Manual, Third Edition.

Figure 30. IDMA Write, Long Write Cycle

Parameter		Min	Max	Unit
IDMA Read, Long Read Cycle				
Timing Requirements:				
$\mathrm{t}_{\text {IKR }}$	$\overline{\text { IACK }}$ Low before Start of Read ${ }^{1}$	0		ns
$\mathrm{t}_{\text {IRK }}$	End of Read after IACK Low ${ }^{2}$	2		ns
Switching Characteristics:				
$\mathrm{t}_{\text {IKHR }}$	$\overline{\text { IACK }}$ High after Start of Read ${ }^{1}$		10	ns
$\mathrm{t}_{\text {IKDS }}$	IAD15-0 Data Setup before IACK Low	$0.5 \mathrm{t}_{\mathrm{CK}}-2$		ns
$\mathrm{t}_{\text {IKDH }}$	IAD15-0 Data Hold after End of Read ${ }^{2}$	0		ns
$\mathrm{t}_{\text {IKDD }}$	IAD15-0 Data Disabled after End of Read ${ }^{2}$		10	ns
$\mathrm{t}_{\text {IRDE }}$	IAD15-0 Previous Data Enabled after Start of Read	0		ns
$\mathrm{t}_{\text {IRDV }}$	IAD15-0 Previous Data Valid after Start of Read		11	ns
$\mathrm{t}_{\text {IRDH1 }}$	IAD15-0 Previous Data Hold after Start of Read (DM/PM1) ${ }^{3}$	$2 \mathrm{t}_{\mathrm{CK}}-3$		ns
$\mathrm{t}_{\text {IRDH2 }}$	IAD15-0 Previous Data Hold after Start of Read (PM2) ${ }^{4}$	$\mathrm{t}_{\mathrm{CK}}-5$		ns

NOTES
${ }^{1}$ Start of Read $=\overline{\text { IS }}$ Low and $\overline{\text { IRD }}$ Low.
${ }^{2}$ End of Read $=\overline{\text { IS }}$ High or $\overline{\text { IRD }}$ High.
${ }^{3} \mathrm{DM}$ read or first half of PM read.
${ }^{4}$ Second half of PM read.

Figure 31. IDMA Read, Long Read Cycle

Parameter		Min	Max	Unit
IDMA Read, Short Read CycleTiming Requirements:				
$\mathrm{t}_{\text {IKR }}$	$\overline{\text { IACK }}$ Low before Start of Read ${ }^{1}$	0		ns
$\mathrm{t}_{\text {IRP }}$	Duration of Read	10		ns
Switching Characteristics:				
$\mathrm{t}_{\text {IKHR }}$	$\overline{\text { IACK }}$ High after Start of Read ${ }^{1}$		10	ns
$\mathrm{t}_{\text {IKDH }}$	IAD15-0 Data Hold after End of Read ${ }^{2}$	0		ns
$\mathrm{t}_{\text {IKDD }}$	IAD15-0 Data Disabled after End of Read ${ }^{2}$		10	ns
$\mathrm{t}_{\text {IRDE }}$	IAD15-0 Previous Data Enabled after Start of Read	0		ns
$\mathrm{t}_{\text {IRDV }}$	IAD15-0 Previous Data Valid after Start of Read		10	ns

NOTES
${ }^{1}$ Start of Read $=\overline{\text { IS }}$ Low and $\overline{\text { IRD }}$ Low.
${ }^{2}$ End of Read $=\overline{\text { IS }}$ High or $\overline{\text { IRD }}$ High.

Figure 32. IDMA Read, Short Read Cycle

100-Lead LQFP Package Pinout

ADSP-2189M

The ADSP-2189M package pinout appears in the following table. Pin names in bold text replace the plain text named functions when Mode $\mathrm{C}=1$. A + sign separates two functions when either function can be active for either major I/O mode. Signals enclosed in brackets [] are state bits latched from the value of the pin at the deassertion of $\overline{\text { RESET. }}$

PIN CONFIGURATION

LQFP Number	Pin Name						
1	A4/IAD3	26	$\overline{\mathrm{IRQE}}+\mathrm{PF} 4$	51	$\overline{\text { EBR }}$	76	D16
2	A5/IAD 4	27	$\overline{\mathrm{IRQL}}+\mathrm{PF} 5$	52	$\overline{\mathrm{BR}}$	77	D17
3	GND	28	GND	53	$\overline{\text { EBG }}$	78	D18
4	A6/IAD5	29	$\overline{\mathrm{IRQL}}+\mathrm{PF} 6$	54	$\overline{\mathrm{BG}}$	79	D19
5	A7/IAD6	30	$\overline{\text { IRQ2 }}+\mathrm{PF} 7$	55	D0/IAD13	80	GND
6	A8/IAD7	31	DT0	56	D1/IAD14	81	D20
7	A9/IAD8	32	TFS0	57	D2/IAD15	82	D21
8	A10/IAD9	33	RFS0	58	D3/IACK	83	D22
9	A11/IAD10	34	DR0	59	$\mathrm{V}_{\text {DDINT }}$	84	D23
10	A12/IAD11	35	SCLK0	60	GND	85	FL2
11	A13/IAD12	36	$\mathrm{V}_{\text {DDEXT }}$	61	D4/ $\overline{\mathbf{I S}}$	86	FL1
12	GND	37	DT1	62	D5/IAL	87	FL0
13	CLKIN	38	TFS1	63	D6/IRD	88	PF3 [Mode D]
14	XTAL	39	RFS1	64	D7/IWR	89	PF2 [Mode C]
15	$\mathrm{V}_{\text {DDEXT }}$	40	DR1	65	D8	90	$\mathrm{V}_{\text {DDEXT }}$
16	CLKOUT	41	GND	66	GND	91	PWD
17	GND	42	SCLK1	67	$\mathrm{V}_{\text {DDEXT }}$	92	GND
18	$\mathrm{V}_{\text {DDINT }}$	43	ERESET	68	D9	93	PF1 [Mode B]
19	$\overline{\mathrm{WR}}$	44	RESET	69	D10	94	PF0 [Mode A]
20	$\overline{\mathrm{RD}}$	45	$\overline{\text { EMS }}$	70	D11	95	$\overline{\text { BGH }}$
21	$\overline{\text { BMS }}$	46	EE	71	GND	96	$\overline{\text { PWDACK }}$
22	$\overline{\text { DMS }}$	47	ECLK	72	D12	97	A0
23	PMS	48	ELOUT	73	D13	98	A1/IAD0
24	$\overline{\text { IOMS }}$	49	ELIN	74	D14	99	A2/IAD1
25	$\overline{\mathrm{CMS}}$	50	EINT	75	D15	100	A3/IAD2

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
100-Lead Metric Thin Plastic Quad Flatpack
(ST-100)

NOTE:
THE ACTUAL POSITION OF EACH LEAD IS WITHIN (0.08) 0.0032 FROM
ITS IDEAL POSITION WHEN MEASURED IN THE LATERAL DIRECTION.
CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED
ORDERING GUIDE

Part Number	Ambient Temperature Range	Instruction Rate	Package Description	Package Option
ADSP-2189MKST-300	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	75 MHz	100 -Lead LQFP	ST-100
ADSP-2189MBST-266	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	66 MHz	100 -Lead LQFP	ST-100

*In 1998, JEDEC reevaluated the specifications for the TQFP package designation, assigning it to packages 1.0 mm thick. Previously labelled TQFP packages (1.6 mm thick) are now designated as LQFP.

[^0]: NOTES
 ${ }^{1}$ Bidirectional pins: D0-D23, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A1-A13, PF0-PF7.
 ${ }^{2}$ Input Only pins: $\overline{\mathrm{RESET}}, \overline{\mathrm{BR}}, \mathrm{DR} 0, \mathrm{DR} 1, \overline{\text { PWD. }}$
 ${ }^{3}$ Input Only pins: CLKIN, $\overline{\text { RESET }}, \overline{\mathrm{BR}}, \mathrm{DR} 0, \mathrm{DR} 1, \overline{\text { PWD }}$.
 ${ }^{4}$ Output pins: $\overline{\mathrm{BG}}, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{IOMS}}, \overline{\mathrm{CMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\text { PWDACK}, ~ A 0, ~ D T 0, ~ D T 1, ~ C L K O U T, ~ F L 2-0, ~} \overline{\mathrm{BGH}}$.
 ${ }^{5}$ Although specified for TTL outputs, all ADSP- 2189 M outputs are CMOS-compatible and will drive to $\mathrm{V}_{\text {DDEXT }}$ and GND, assuming no dc loads.
 ${ }^{6}$ Guaranteed but not tested.
 ${ }^{7}$ Three-statable pins: A0-A13, D0-D23, $\overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{IOMS}}, \overline{\mathrm{CMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{DT} 0, \mathrm{DT} 1, \mathrm{SCLK} 0, \mathrm{SCLK} 1, \mathrm{TFS} 0, \mathrm{TFS} 1, \mathrm{RFS} 0, \mathrm{RFS} 1, \mathrm{PF} 0-\mathrm{PF} 7$.
 ${ }^{8} 0 \mathrm{~V}$ on $\overline{\mathrm{BR}}$.
 ${ }^{9}$ Idle refers to ADSP-2189M state of operation during execution of IDLE instruction. Deasserted pins are driven to either V_{DD} or GND.
 ${ }^{10} \mathrm{I}_{\mathrm{DD}}$ measurement taken with all instructions executing from internal memory. 50% of the instructions are multifunction (types $1,4,5,12,13,14$), 30% are type 2 and type 6 , and 20% are idle instructions.
 ${ }^{11} \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ and 3 V . For typical figures for supply currents, refer to Power Dissipation section.
 ${ }^{12}$ See Chapter 9 of the ADSP-2100 Family User's Manual, Third Edition for details.
 ${ }^{13}$ Applies to LQFP package type.
 ${ }^{14}$ Output pin capacitance is the capacitive load for any three-stated output pin.
 ${ }^{15} \mathrm{~V}_{\text {DDINT }}=2.5 \mathrm{~V} . \mathrm{T}=25^{\circ} \mathrm{C}$.
 Specifications subject to change without notice.

