阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

Low Cost DSP Microcomputers

ADSP-2104/ADSP-2109

SUMMARY

16-Bit Fixed-Point DSP Microprocessors with On-Chip Memory
Enhanced Harvard Architecture for Three-Bus Performance: Instruction Bus \& Dual Data Buses Independent Computation Units: ALU, Multiplier/ Accumulator, and Shifter
Single-Cycle Instruction Execution \& Multifunction Instructions
On-Chip Program Memory RAM or ROM \& Data Memory RAM
Integrated I/O Peripherals: Serial Ports and Timer

FEATURES

20 MIPS, 50 ns Maximum Instruction Rate
Separate On-Chip Buses for Program and Data Memory
Program Memory Stores Both Instructions and Data (Three-Bus Performance)
Dual Data Address Generators with Modulo and Bit-Reverse Addressing
Efficient Program Sequencing with Zero-Overhead Looping: Single-Cycle Loop Setup
Automatic Booting of On-Chip Program Memory from Byte-Wide External Memory (e.g., EPROM)
Double-Buffered Serial Ports with Companding Hardware, Automatic Data Buffering, and Multichannel Operation
Three Edge- or Level-Sensitive Interrupts
Low Power IDLE Instruction
PLCC Package

GENERAL DESCRIPTION

The ADSP-2104 and ADSP-2109 processors are single-chip microcomputers optimized for digital signal processing (DSP) and other high speed numeric processing applications. The AD SP-2104/A D SP-2109 processors are built upon a common core. Each processor combines the core DSP architecturecomputation units, data address generators, and program sequencer-with differentiating features such as on-chip program and data memory RAM (AD SP-2109 contains 4K words of program ROM), a programmable timer, and two serial ports.

F abricated in a high speed, submicron, double-layer metal CM OS process, the ADSP-2104/AD SP-2109 operates at 20 M IPS with a 50 ns instruction cycle time. The ADSP-2104L and ADSP-2109L are 3.3 volt versions which operate at 13.824 M IPS with a 72.3 ns instruction cycle time. Every instruction can execute in a single cycle. F abrication in CM OS results in low power dissipation.

REV. 0

FUNCTIONAL BLOCK DIAGRAM

The AD SP-2100 F amily's flexible architecture and comprehensive instruction set support a high degree of parallelism. In one cycle the ADSP-2104/AD SP-2109 can perform all of the following operations:

- Generate the next program address
- F etch the next instruction
- Perform one or two data moves
- U pdate one or two data address pointers
- Perform a computation
- Receive and transmit data via one or two serial ports

The AD SP-2104 contains 512 words of program RAM , 256 words of data RAM , an interval timer, and two serial ports. The ADSP-2104L is a 3.3 volt power supply version of the ADSP-2104; it is identical to the AD SP-2104 in all other characteristics.
The ADSP-2109 contains 4K words of program ROM and 256 words of data RAM , an interval timer, and two serial ports.
The ADSP-2109L is a 3.3 volt power supply version of the ADSP-2109; it is identical to the AD SP-2109 in all other characteristics.

ADSP-2104/ADSP-2109

The AD SP-2109 is a memory-variant version of the AD SP2104 and contains factory-programmed on-chip ROM program memory.
The ADSP-2109 eliminates the need for an external boot EPROM in your system, and can also eliminate the need for any external program memory by fitting the entire application program in on-chip ROM. This device provides an excellent option for volume applications where board space and system cost constraints are of critical concern.

Development Tools

The AD SP-2104/AD SP-2109 processors are supported by a complete set of tools for system development. The AD SP-2100 Family D evelopment Software includes C and assembly language tools that allow programmers to write code for any ADSP-21xx processor. The AN SI C compiler generates ADSP21xx assembly source code, while the runtime C library provides AN SI-standard and custom DSP library routines. The ADSP21xx assembler produces object code modules which the linker combines into an executable file. The processor simulators provide an interactive instruction-level simulation with a reconfigurable,
windowed user interface. A PROM splitter utility generates PROM programmer compatible files.
EZ-ICE ${ }^{\circledR}$ in-circuit emulators allow debugging of ADSP-2104 systems by providing a full range of emulation functions such as modification of memory and register values and execution breakpoints. EZ-LAB ${ }^{\circledR}$ demonstration boards are complete D SP systems that execute EPROM -based programs.
The EZ-K it Lite is a very low cost evaluation/development platform that contains both the hardware and software needed to evaluate the ADSP-21xx architecture.
Additional details and ordering information is available in the A DSP-2100 F amily Software \& H ardware D evelopment T ools data sheet (ADDS-21xx-TOOLS). This data sheet can be requested from any A nalog D evices sales office or distributor.

Additional Information

This data sheet provides a general overview of AD SP-2104/ ADSP-2109 processor functionality. F or detailed design information on the architecture and instruction set, refer to the A D SP-2100 F amily U ser's M anual, available from Analog D evices.

EZ-ICE and EZ-LAB are registered trademarks of Analog D evices, Inc.

TABLE OF CONTENTS

GENERAL DESCRIPTION 1
D evelopment Tools 2
Additional Information 2
ARCHITECTURE OVERVIEW 3
Serial Ports 4
Interrupts 4
Pin D efinitions 5
SYSTEM INTERFACE 5
Clock Signals 5
Reset 6
Program M emory Interface 6
Program M emory M aps 7
D ata M emory Interface 7
Data M emory M ap 7
Boot M emory Interface 8
Bus Interface 8
Low Power IDLE Instruction 8
ADSP-2109 Prototyping 9
Ordering Procedure for AD SP-2109 ROM Processors 9
Instruction Set 10
SPECIFICATIONS (ADSP-2104/AD SP-2109) 12
Recommended Operating Conditions 12
Electrical C haracteristics 12
Supply Current \& Power 13
Power Dissipation Example 14
Environmental C onditions 14
C apacitive Loading 14
T est Conditions 15
SPECIFICATIONS (ADSP-2104L/AD SP-2109L) 16
Recommended O perating Conditions 16
Electrical Characteristics 16
Supply Current \& Power 17
Power Dissipation Example 18
Environmental Conditions 18
C apacitive Loading 18
T est Conditions 19
TIM ING PARAM ETERS (AD SP-2104/ADSP-2109) 20
C lock Signals 21
Interrupts \& Flags 22
Bus Request-Bus Grant 23
M emory Read 24
M emory W rite 25
Serial Ports 26
TIMING PARAM ETERS (ADSP-2104L/ADSP-2109L) 27
C lock Signals 28
Interrupts \& Flags 29
Bus Request-Bus Grant 30
M emory Read 31
M emory W rite 32
Serial Ports 33
PIN CONFIGURATIONS
68-Lead PLCC 34
PACKAGE OUTLINE DIMENSIONS 68-L ead PLCC 35
ORDERING GUIDE 36

Figure 1. ADSP-2104/ADSP-2109 Block Diagram

ARCHITECTURE OVERVIEW

Figure 1 shows a block diagram of the ADSP-2104/ADSP-2109 architecture. The processor contains three independent computational units: the ALU , the multiplier/accumulator (MAC), and the shifter. The computational units process 16-bit data directly and have provisions to support multiprecision computations. The ALU performs a standard set of arithmetic and logic operations; division primitives are also supported. The M AC performs single-cycle multiply, multiply/add, and multiply/ subtract operations. The shifter performs logical and arithmetic shifts, normalization, denormalization, and derive exponent operations. The shifter can be used to efficiently implement numeric format control including multiword floating-point representations.
The internal result (R) bus directly connects the computational units so that the output of any unit may be used as the input of any unit on the next cycle.
A powerful program sequencer and two dedicated data address generators ensure efficient use of these computational units. T he sequencer supports conditional jumps, subroutine calls, and returns in a single cycle. With internal loop counters and loop stacks, the AD SP-2104/AD SP-2109 executes looped code with zero overhead-no explicit jump instructions are required to maintain the loop. N ested loops are also supported.
T wo data address generators (D AGs) provide addresses for simultaneous dual operand fetches (from data memory and program memory). Each DAG maintains and updates four address pointers. Whenever the pointer is used to access data (indirect addressing), it is post-modified by the value of one of four modify registers. A length value may be associated with each pointer to implement automatic modulo addressing for
circular buffers. The circular buffering feature is also used by the serial ports for automatic data transfers to (and from) onchip memory.
Efficient data transfer is achieved with the use of five internal buses:

- Program M emory Address (PMA) Bus
- Program M emory Data (PM D) Bus
- D ata M emory Address (DMA) Bus
- D ata M emory D ata (D M D) Bus
- Result (R) Bus

The two address buses (PM A, D M A) share a single external address bus, allowing memory to be expanded off-chip, and the two data buses (PM D, DM D) share a single external data bus. The $\overline{\mathrm{BMS}}, \overline{\mathrm{DMS}}$, and $\overline{\text { PMS }}$ signals indicate which memory space is using the external buses.
Program memory can store both instructions and data, permitting the ADSP-2104/ADSP-2109 to fetch two operands in a single cycle, one from program memory and one from data memory. The processor can fetch an operand from on-chip program memory and the next instruction in the same cycle.
The memory interface supports slow memories and memorymapped peripherals with programmable wait state generation. External devices can gain control of the processor's buses with the use of the bus request/grant signals ($\overline{\mathrm{BR}}, \overline{\mathrm{BG}}$).
One bus grant execution mode (GO M ode) allows the ADSP2104/AD SP-2109 to continue running from internal memory. A second execution mode requires the processor to halt while buses are granted.

ADSP-2104/ADSP-2109

The AD SP-2104/AD SP-2109 can respond to several different interrupts. There can be up to three external interrupts, configured as edge- or level-sensitive. Internal interrupts can be generated by the timer and serial ports. There is also a master RESET signal.
Booting circuitry provides for loading on-chip program memory automatically from byte-wide external memory. After reset, three wait states are automatically generated. This allows, for example, the AD SP-2104 to use a 150 ns EPROM as external boot memory. M ultiple programs can be selected and loaded from the EPROM with no additional hardware.
The data receive and transmit pins on SPORT 1 (Serial Port 1) can be alternatively configured as a general-purpose input flag and output flag. Y ou can use these pins for event signalling to and from an external device.

A programmable interval timer can generate periodic interrupts. A 16-bit count register (TCOUNT) is decremented every n cycles, where $n-1$ is a scaling value stored in an 8 -bit register (TSCALE). When the value of the count register reaches zero, an interrupt is generated and the count register is reloaded from a 16-bit period register (TPERIOD).

Serial Ports

The ADSP-2104/AD SP-2109 processor includes two synchronous serial ports ("SPORT s") for serial communications and multiprocessor communication.
The serial ports provide a complete synchronous serial interface with optional companding in hardware. A wide variety of framed or frameless data transmit and receive modes of operation are available. Each SPORT can generate an internal programmable serial clock or accept an external serial clock.
Each serial port has a 5 -pin interface consisting of the following signals:

Signal Name	Function
SCLK	Serial Clock (I/O)
RFS	Receive Frame Synchronization (I/O)
TFS	Transmit F rame Synchronization (I/O)
DR	Serial D ata Receive
DT	Serial D ata T ransmit

The serial ports offer the following capabilities:
Bidirectional-E ach SPORT has a separate, double-buffered transmit and receive function.
Flexible Clocking-E ach SPORT can use an external serial clock or generate its own clock internally.
Flexible Framing-T he SPORT s have independent framing for the transmit and receive functions; each function can run in a frameless mode or with frame synchronization signals internally generated or externally generated; frame sync signals may be active high or inverted, with either of two pulse widths and timings.
Different Word Lengths-E ach SPORT supports serial data word lengths from 3 to 16 bits.
Companding in Hardware-Each SPORT provides optional A-law and μ-law companding according to CCIT T recommendation G. 711 .

Flexible Interrupt Scheme-R eceive and transmit functions can generate a unique interrupt upon completion of a data word transfer.
Autobuffering with Single-Cycle Overhead-E ach SPORT can automatically receive or transmit the contents of an entire circular data buffer with only one overhead cycle per data word; an interrupt is generated after the transfer of the entire buffer is completed.
Multichannel Capability (SPORTOOnly)—SPORTO provides a multichannel interface to selectively receive or transmit a 24-word or 32-word, time-division multiplexed serial bit stream; this feature is especially useful for T 1 or CEPT interfaces, or as a network communication scheme for multiple processors.
Alternate Configuration-SPORT 1 can be alternatively configured as two external interrupt inputs ($\overline{\mathrm{IRQ} 0}, \overline{\mathrm{IRQ1}}$) and the Flag In and Flag Out signals (FI, FO).

Interrupts

The interrupt controller lets the processor respond to interrupts with a minimum of overhead. Up to three external interrupt input pins, $\overline{\mathrm{IRQ}} 0, \overline{\mathrm{IRQ} 1}$, and $\overline{\mathrm{IRQ} 2}$, are provided. $\overline{\mathrm{IRQ} 2}$ is always available as a dedicated pin; $\overline{\mathrm{IRQ} 1}$ and $\overline{\mathrm{IRQ} 0}$ may be alternately configured as part of Serial Port 1. The AD SP-2104/ AD SP-2109 also supports internal interrupts from the timer, and serial ports. T he interrupts are internally prioritized and individually maskable (except for $\overline{\text { RESET }}$ which is nonmaskable). The $\overline{\text { IRQx }}$ input pins can be programmed for either level- or edge-sensitivity. The interrupt priorities are shown in Table I.

Table I. Interrupt Vector Addresses \& Priority

ADSP-2104/ADSP-2109 Interrupt Source	Interrupt Vector Address
$\overline{\text { RESET Startup }}$	0×0000
$\overline{\text { IRQ2 }}$	0×0004 (High Priority)
SPORT 0 Transmit	0×0008
SPORT 0 Receive	$0 \times 000 \mathrm{C}$
SPORT 1 T ransmit or $\overline{\text { IRQ1 }}$	0×0010
SPORT 1 Receive or IRQ0	0×0014
Timer	0×0018 (L ow Priority)

The AD SP-2104/AD SP-2109 uses a vectored interrupt scheme: when an interrupt is acknowledged, the processor shifts program control to the interrupt vector address corresponding to the interrupt received. Interrupts can be optionally nested so that a higher priority interrupt can preempt the currently executing interrupt service routine. E ach interrupt vector location is four instructions in length so that simple service routines can be coded entirely in this space. Longer service routines require an additional JUM P or CALL instruction.
Individual interrupt requests are logically AN D ed with the bits in the IM ASK register; the highest-priority unmasked interrupt is then selected.

The interrupt control register, ICNTL, allows the external interrupts to be set as either edge- or level-sensitive. D epending on bit 4 in ICNTL, interrupt service routines can either be nested (with higher priority interrupts taking precedence) or be processed sequentially (with only one interrupt service active at a time).
The interrupt force and clear register, IFC, is a write-only register that contains a force bit and a clear bit for each interrupt.
When responding to an interrupt, the ASTAT, M ST AT, and IM ASK status registers are pushed onto the status stack and the PC counter is loaded with the appropriate vector address. The status stack is seven levels deep to allow interrupt nesting. The stack is automatically popped when a return from the interrupt instruction is executed.

Pin Definitions

T able II shows pin definitions for the ADSP-2104/ADSP-2109 processors. Any inputs not used must be tied to $\mathrm{V}_{\text {DD }}$.

SYSTEM INTERFACE

Figure 3 shows a typical system for the ADSP-2104/AD SP-2109, with two serial I/O devices, a boot EPROM , and optional external program and data memory. A total of 14.25 K words of data memory and 14.5 K words of program memory is addressable.

Programmable wait-state generation allows the processors to easily interface to slow external memories.
The ADSP-2104/ADSP-2109 also provides either: one external interrupt ($\overline{\mathrm{IRQ} 2}$) and two serial ports (SPORT 0, SPORT 1), or three external interrupts ($\overline{\mathrm{IRQ} 2}, \overline{\mathrm{IRQ1}}, \overline{\mathrm{IRQ} 0}$) and one serial port (SPORT 0).

Clock Signals

The AD SP-2104/AD SP-2109's CLK IN input may be driven by a crystal or by a TTL-compatible external clock signal. The CLKIN input may not be halted or changed in frequency during operation, nor operated below the specified low frequency limit.
If an external clock is used, it should be a T T L-compatible signal running at the instruction rate. The signal should be connected to the processor's CLK IN input; in this case, the XTAL input must be left unconnected.
Because the processor includes an on-chip oscillator circuit, an external crystal may also be used. The crystal should be connected across the CLKIN and XTAL pins, with two capacitors connected as shown in Figure 2. A parallel-resonant, fundamental frequency, microprocessor-grade crystal should be used.

Table II. ADSP-2104/ADSP-2109 Pin Definitions

Pin Name(s)	\# of Pins	Input/ Output	Function
Address	14	0	Address outputs for program, data and boot memory.
D atal	24	1/0	D ata I/O pins for program and data memories. Input only for boot memory, with two M SBs used for boot memory addresses. U nused data lines may be left floating.
RESET	1	I	Processor Reset Input
$\overline{\mathrm{IRQ} 2}$	1	I	External Interrupt Request \#2
$\overline{\mathrm{BR}}^{2}$	1	I	External Bus Request Input
$\overline{\mathrm{BG}}$	1	0	External Bus Grant Output
$\overline{\text { PMS }}$	1	0	External Program M emory Select
$\overline{\text { DMS }}$	1	0	External D ata M emory Select
BMS	1	0	B oot M emory Select
$\overline{\mathrm{RD}}$	1	0	External M emory R ead Enable
WR	1	0	External M emory Write Enable
M MAP	1	I	M emory M ap Select Input
CLKIN, XTAL	2	1	External Clock or Quartz Crystal Input
CLKOUT	1	0	Processor Clock Output
$V_{\text {DD }}$			Power Supply Pins
GND			Ground Pins
SPORT0	5	I/O	Serial Port 0 Pins (TFS0, RFS0, DT0, DR 0, SCLK 0)
SPORT 1	5	I/O	Serial Port 1 Pins (TFS1, RFS1, DT 1, DR1, SCLK 1)
or Interrupts \& F lags:			
$\overline{\text { IRQ0 }}$ (RFS1)	1	I	External Interrupt Request \#0
IRQ1 (TFS1)	1	I	External Interrupt Request \#1
FI (DR1)	1	1	F lag Input Pin
FO (DT1)	1	0	Flag Output Pin

[^0]
ADSP-2104/ADSP-2109

Figure 2. External Crystal Connections
A clock output signal (CLK OUT) is generated by the processor, synchronized to the processor's internal cycles.

Reset

The $\overline{\text { RESET }}$ signal initiates a complete reset of the processor. The RESET signal must be asserted when the chip is powered up to assure proper initialization. If the $\overline{\text { RESET }}$ signal is applied during initial power-up, it must be held long enough to allow the processor's internal clock to stabilize. If $\overline{\text { RESET }}$ is activated at any time after power-up and the input clock frequency does not change, the processor's internal clock continues and does not require this stabilization time.
The power-up sequence is defined as the total time required for the crystal oscillator circuit to stabilize after a valid V_{DD} is applied to the processor and for the internal phase-locked loop (PLL) to lock onto the specific crystal frequency. A minimum of $2000 \mathrm{t}_{\mathrm{CK}}$ cycles will ensure that the PLL has locked (this does not, however, include the crystal oscillator start-up time). D uring this power-up sequence the RESET signal should be held low. On any subsequent resets, the $\overline{\text { RESET signal must }}$ meet the minimum pulse width specification, $t_{R S P}$.
To generate the $\overline{\text { RESET }}$ signal, use either an RC circuit with an external Schmidt trigger or a commercially available reset IC. (D o not use only an RC circuit.)

The $\overline{\text { RESET }}$ input resets all internal stack pointers to the empty stack condition, masks all interrupts, and clears the M ST AT register. When RESET is released, the boot loading sequence is performed (provided there is no pending bus request and the chip is configured for booting, with M M AP = 0). The first instruction is then fetched from internal program memory location 0x0000.

Program Memory Interface

The on-chip program memory address bus (PM A) and on-chip program memory data bus (PM D) are multiplexed with the onchip data memory buses (D M A, D M D), creating a single external data bus and a single external address bus. T he external data bus is bidirectional and is 24 bits wide to allow instruction fetches from external program memory. Program memory may contain code and data.
The external address bus is 14 bits wide.
The data lines are bidirectional. The program memory select ($\overline{\mathrm{PMS}}$) signal indicates accesses to program memory and can be used as a chip select signal. The write ($\overline{\mathrm{WR})}$ signal indicates a write operation and is used as a write strobe. The read ($\overline{\mathrm{RD}}$) signal indicates a read operation and is used as a read strobe or output enable signal.
The processor writes data from the 16-bit registers to 24-bit program memory using the PX register to provide the lower eight bits. When the processor reads 16 -bit data from 24 -bit program memory to a 16-bit data register, the lower eight bits are placed in the PX register.
The program memory interface can generate 0 to 7 wait states for external memory devices; default is to 7 wait states after RESET.

THE TWO MSBs OF THE DATA BUS (D_{23-22}) ARE USED TO SUPPLY THE TWO MSBs OF THE BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.

Figure 3. ADSP-2104/ADSP-2109 System

Program Memory Maps

Program memory can be mapped in two ways, depending on the state of the M M AP pin. Figure 4 shows the AD SP-2104 program memory maps. Figure 5 shows the program memory maps for the ADSP-2109.

Figure 4. ADSP-2104 Program Memory Maps

Figure 5. ADSP-2109 Program Memory Maps

ADSP- 2104

When M MAP $=0$, on-chip program memory RAM occupies 512 words beginning at address 0×0000. Off-chip program memory uses the remaining 14 K words beginning at address 0x0800. In this configuration-when $\mathrm{M} \mathrm{M} \mathrm{AP}=0$-the boot loading sequence (described below in "B oot M emory Interface") is automatically initiated when RESET is released.
When M M AP $=1,14 \mathrm{~K}$ words of off-chip program memory begin at address 0×0000 and on-chip program memory RAM is located in the 512 words between addresses $0 \times 3800-0 \times 39 F F$. In this configuration, program memory is not booted although it can be written to and read under program control.

Data Memory Interface

The data memory address bus (D M A) is 14 bits wide. The bidirectional external data bus is 24 bits wide, with the upper 16 bits used for data memory data (D M D) transfers.
The data memory select ($\overline{\mathrm{DMS}}$) signal indicates access to data memory and can be used as a chip select signal. The write (WR) signal indicates a write operation and can be used as a write strobe. The read ($\overline{\mathrm{RD}})$ signal indicates a read operation and can be used as a read strobe or output enable signal.
The ADSP-2104/AD SP-2109 processors support memorymapped I/O, with the peripherals memory-mapped into the data memory address space and accessed by the processor in the same manner as data memory.

Data Memory Map

ADSP-2104

On-chip data memory RAM resides in the 256 words beginning at address 0×3800, also shown in Figure 6. D ata memory locations from 0×3900 to the end of data memory at 0×3 F FF are reserved. Control and status registers for the system, timer, wait-state configuration, and serial port operations are located in this region of memory.

Figure 6. Data Memory Map
The remaining 14 K of data memory is located off-chip. This external data memory is divided into five zones, each associated with its own wait-state generator. T his allows slower peripherals to be memory-mapped into data memory for which wait states are specified. By mapping peripherals into different zones, you can accommodate peripherals with different wait-state requirements. All zones default to seven wait states after RESET.

ADSP-2104/ADSP-2109

Boot Memory Interface

Boot memory is an external 16 K by 8 space, divided into eight separate 2 K by 8 pages. The 8 -bit bytes are automatically packed into 24-bit instruction words by the processor, for loading into on-chip program memory.
Three bits in the processors' System C ontrol Register select which page is loaded by the boot memory interface. A nother bit in the System Control Register allows the forcing of a boot loading sequence under software control. Boot loading from Page 0 after $\overline{\text { RESET }}$ is initiated automatically if M M AP $=0$.
The boot memory interface can generate zero to seven wait states; it defaults to three wait states after $\overline{\text { RESET. This allows }}$ the AD SP-2104 to boot from a single low cost EPROM such as a 27C 256. Program memory is booted one byte at a time and converted to 24-bit program memory words.
The $\overline{\mathrm{BMS}}$ and $\overline{\mathrm{RD}}$ signals are used to select and to strobe the boot memory interface. Only 8-bit data is read over the data bus, on pins D8-D 15. To accommodate up to eight pages of boot memory, the two M SBs of the data bus are used in the boot memory interface as the two M SBs of the boot memory address: D 23, D 22, and A13 supply the boot page number.
The ADSP-2100 Family Assembler and Linker allow the creation of programs and data structures requiring multiple boot pages during execution.
The $\overline{\mathrm{BR}}$ signal is recognized during the booting sequence. The bus is granted after loading the current byte is completed. $\overline{\mathrm{BR}}$ during booting may be used to implement booting under control of a host processor.

Bus Interface

The AD SP-2104/AD SP-2109 can relinquish control of their data and address buses to an external device. When the external device requires control of the buses, it asserts the bus request signal $(\overline{\mathrm{BR}})$. If the processor is not performing an external memory access, it responds to the active $\overline{\mathrm{BR}}$ input in the next cycle by:

- Three-stating the data and address buses and the $\overline{\text { PMS, }}$ $\overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ output drivers,
- Asserting the bus grant $(\overline{\mathrm{BG}})$ signal,
- and halting program execution.

If the Go mode is set, however, the ADSP-2104/AD SP-2109 will not halt program execution until it encounters an instruction that requires an external memory access.
If the processor is performing an external memory access when the external device asserts the $\overline{\mathrm{BR}}$ signal, it will not three-state the memory interfaces or assert the $\overline{\mathrm{BG}}$ signal until the cycle after the access completes (up to eight cycles later depending on
the number of wait states). The instruction does not need to be completed when the bus is granted; the processor will grant the bus in between two memory accesses if an instruction requires more than one external memory access.
When the $\overline{\mathrm{BR}}$ signal is released, the processor releases the $\overline{\mathrm{BG}}$ signal, re-enables the output drivers and continues program execution from the point where it stopped.
The bus request feature operates at all times, including when the processor is booting and when RESET is active. If this feature is not used, the $\overline{B R}$ input should be tied high (to V_{DD}).

Low Power IDLE Instruction

The IDLE instruction places the processor in low power state in which it waits for an interrupt. When an interrupt occurs, it is serviced and execution continues with instruction following IDLE. T ypically this next instruction will be a JUM P back to the IDLE instruction. This implements a low-power standby loop.
TheIDLE n instruction is a special version of ID LE that slows the processor's internal clock signal to further reduce power consumption. The reduced clock frequency, a programmable fraction of the normal clock rate, is specified by a selectable divisor, n, given in the IDLE instruction. The syntax of the instruction is:

IDLE n;

where $n=16,32,64$, or 128 .
The instruction leaves the chip in an idle state, operating at the slower rate. While it is in this state, the processor's other internal clock signals, such as SCLK, CLK OUT, and the timer clock, are reduced by the same ratio. U pon receipt of an enabled interrupt, the processor will stay in the IDLE state for up to a maximum of n CLKIN cycles, where n is the divisor specified in the instruction, before resuming normal operation.
When the IDLE n instruction is used, it slows the processor's internal clock and thus its response time to incoming interruptsthe 1-cycle response time of the standard IDLE state is increased by n, the clock divisor. When an enabled interrupt is received, the ADSP-21xx will remain in the IDLE state for up to a maximum of n CLKIN cycles (where $n=16,32,64$, or 128) before resuming normal operation.

When the IDLE n instruction is used in systems that have an externally generated serial clock (SCLK), the serial clock rate may be faster than the processor's reduced internal clock rate. U nder these conditions, interrupts must not be generated at a faster rate than can be serviced, due to the additional time the processor takes to come out of the ID LE state (a maximum of n CLKIN cycles).

ADSP-2109 Prototyping

Y ou can prototype your AD SP-2109 system with the AD SP2104 RAM -based processor. When code is fully developed and debugged, it can be submitted to Analog D evices for conversion into a ADSP-2109 ROM product.
The ADSP-2101 EZ-ICE emulator can be used for development of AD SP-2109 systems. For the 3.3 V ADSP-2109, a voltage converter interface board provides 3.3 V emulation.
Additional overlay memory is used for emulation of AD SP-2109 systems. It should be noted that due to the use of off-chip overlay memory to emulate the AD SP-2109, a performance loss may be experienced when both executing instructions and fetching program memory data from the off-chip overlay memory in the same cycle. This can be overcome by locating program memory data in on-chip memory.

Ordering Procedure for ADSP-2109 ROM Processor

T o place an order for a custom ROM -coded ADSP-2109, you must:

1. C omplete the following forms contained in the ADSP ROM O rdering Package, available from your A nalog D evices sales representative:
ADSP-2109 ROM Specification Form
ROM Release A greement
ROM NRE Agreement \& M inimum Quantity Order (M QO)
A cceptance Agreement for Pre-Production ROM Products
2. Return the forms to A nalog D evices along with two copies of the M emory Image File (.EXE file) of your ROM code. The files must be supplied on two $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$ floppy disks for the IBM PC (DOS 2.01 or higher).
3. Place a purchase order with Analog D evices for nonrecurring engineering changes (NRE) associated with ROM product development.

After this information is received, it is entered into A nalog D evices' ROM M anager System which assigns a custom ROM model number to the product. T his model number will be branded on all prototype and production units manufactured to these specifications.
To minimize the risk of code being altered during this process, Analog D evices verifies that the .EXE files on both floppy disks are identical, and recalculates the checksums for the EXE file entered into the ROM M anager System. T he checksum data, in the form of a ROM M emory M ap, a hard copy of the EXE file, and a ROM D ata Verification form are returned to you for inspection.
A signed ROM Verification Form and a purchase order for production units are required prior to any product being manufactured. Prototype units may be applied toward the minimum order quantity.
U pon completion of prototype manufacture, Analog D evices will ship prototype units and a delivery schedule update for production units. An invoice against your purchase order for the NRE charges is issued at this time.
There is a charge for each ROM mask generated and a minimum order quantity. C onsult your sales representative for details. A separate order must be placed for parts of a specific package type, temperature range, and speed grade.

ADSP-2104/ADSP-2109

Instruction Set

The ADSP-2104/AD SP-2109 assembly language uses an algebraic syntax for ease of coding and readability. The sources and destinations of computations and data movements are written explicitly in each assembly statement, eliminating cryptic assembler mnemonics.
Every instruction assembles into a single 24-bit word and executes in a single cycle. The instructions encompass a wide variety of instruction types along with a high degree of
operational parallelism. There are five basic categories of instructions: data move instructions, computational instructions, multifunction instructions, program flow control instructions and miscellaneous instructions. M ultifunction instructions perform one or two data moves and a computation.
The instruction set is summarized below. TheA DSP-2100 F amily U sers M anual contains a complete reference to the instruction set.

ALU Instructions

[IF cond] AR\|AF	$=$ xop +yop [+C];
	$=$ xop - yop $[+C-1] ;$
	$=$ yop - xop $[+C-1] ;$
	$=$ xop AND yop ;
	$=$ xop OR yop ;
	$=$ xop XOR yop ;
	$=$ PASS xop ;
	$=-$ xop ;
	$=$ NOT xop ;
	$=$ ABS xop $;$
	$=$ yop $1 ;$
	$=$ yop $-1 ;$
	$=$ DIVS yop, xop $;$
	$=$ DIVQ xop ;

MAC Instructions

```
[IF cond] MR|MF = xop * yop ;
                = MR + xop * yop;
                = MR - xop * yop ;
                = MR;
                = 0;
```

IF M V SAT MR;

Shifter Instructions

[IF cond]	SR = [SR OR] ASHIFT xop ;
[IF cond]	SR = [SR OR] LSHIFT xop ;
	SR = [SR OR] ASHIFT xop BY <exp>;
	SR = [SR OR] LSHIFT xop BY <exp>;
[IF cond]	SE =EXP xop ;
[IF cond]	SB = EXPAD] xop ;
[IF cond]	SR =[SR OR] NORM xop ;

Data Move Instructions

reg = reg;
reg $=$ <data> ;
reg = DM (<addr>) ;
dreg = DM (Ix, My);
dreg $=P M(I x, M y)$;
DM (<addr>) = reg;
DM (Ix, My) = dreg;
PM $(I x, M y)=$ dreg ;

Add/Add with Carry

Subtract X - Y/Subtract X - Y with B orrow
Subtract Y - X Subtract Y - X with B orrow
AND
0 R
XOR
Pass, Clear
N egate
NOT
A bsolute V alue
I ncrement
D ecrement
Divide

M ultiply
M ultiply/A ccumulate
M ultiply/Subtract
Transfer M R
Clear
Conditional M R Saturation

A rithmetic Shift
Logical Shift
A rithmetic Shift Immediate
Logical Shift I mmediate
D erive Exponent
B lock Exponent A djust
N ormalize

R egister-to-R egister M ove
L oad Register Immediate
D ata M emory Read (D irect Address)
D ata M emory Read (Indirect A ddress)
Program M emory Read (Indirect Address)
D ata M emory W rite (D irect Address)
D ata M emory W rite (Indirect Address)
Program M emory W rite (Indirect A ddress)

Multifunction Instructions

<M AC>\|<SHIFT>, dreg = dreg	Computation with R egister-to-R egister M ove
$<A L U>\mid<$ AC $>\mid<$ SHIFT $>$, dreg = DM ($1 \mathrm{x}, \mathrm{M} \mathrm{y}$) ;	C omputation with M emory R ead
	Computation with M emory R ead
DM ($1 \mathrm{x}, \mathrm{M}$ y) $=$ dreg, $<$ ALU $\rangle\|<M A C>\|<S H I F T>$;	Computation with M emory W rite
PM ($1 \mathrm{x}, \mathrm{My}$) $=$ dreg, $\langle A L U\rangle\|<M A C>\|<S H I F T>$;	Computation with M emory W rite
dreg = DM (Ix, M y) , dreg = PM (Ix, M y) ;	Data \& Program M emory Read
$<A L U\rangle \mid<M A C>, d r e g=D M(1 x, M y)$, dreg = PM (Ix, M y) ;	ALU/M AC with D ata \& Program M emory Read

Program Flow Instructions

DO <addr> [UNTIL term] [IF cond] JUM P (Ix) ;	D o U ntil Loop	
	Jump	
[IF cond] JUM P <addr>;		
[IF cond] CALL (Ix) ;	Call Subroutine	
[IF cond] CALL <addr>;		
IF [NOT] FLAG_IN JUMP <addr>;	Jump/Call on Flag In Pin	
IF [NOT] FLAG ${ }^{-1 N}$ CALL <addr>;		
[IF cond] SET\|RESET	TOGGLE FLAG_OUT [, ...] ;	M odify Flag Out Pin
[IF cond] RTS ;	Return from Subroutine	
[IF cond] RTI;	R eturn from Interrupt Service R outine	
IDLE [(n)];	Idle	

Miscellaneous Instructions

```NOP; M ODIFY (Ix , M y); [PUSH STS][,POP CNTR][,POP PC][,POP LOOP]; ENA\|DIS SEC_REG [,...]; BIT REV AV_LATCH AR-SAT M MODE TIMER G_MODE```	NoO peration   M odify A ddress R egister   Stack C ontrol   M ode C ontrol

## Notation Conventions

Ix	Index registers for indirect addressing
M y	M odify registers for indirect addressing
<data>	Immediate data value
<addr>	Immediate address value
<exp>	Exponent (shift value) in shift immediate instructions (8-bit signed number)
<ALU >	Any ALU instruction (except divide)
<M AC>	Any multiply-accumulate instruction
<SHIFT>	Any shift instruction (except shift immediate)
cond	Condition code for conditional instruction
term	T ermination code for D O U T IL loop
dreg	D ata register (of ALU, M AC, or Shifter)
reg	Any register (including dregs)
;	A semicolon terminates the instruction
	Commas separate multiple operations of a single instruction
[ ]	Optional part of instruction
[, ...]	Optional, multiple operations of an instruction
option1 \| option2	L ist of options; choose one.

## Assembly Code Example

The following example is a code fragment that performs the filter tap update for an adaptive filter based on a least-mean-squared algorithm. N otice that the computations in the instructions are written like algebraic equations.

```
 MF=MX0 * MY1 (RND), MX0=DM(I2,M1); {MF=error*beta }
 MR=MXO * MF (RND), AY0=PM(I6,M5);
 DO adapt UNTIL CE;
 AR=MR1+AY0, MX0=DM(I2,M1), AY0=PM(I6,M7);
adapt: PM(I6,M6)=AR, MR=MX0*MF (RND);
```

```
MODIFY(I2,M3);
```

MODIFY(I2,M3);
MODIFY(I6,M7); {Point to start of data}

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Parameter}} & \multicolumn{2}{|c|}{K Grade} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Max & \\
\hline \(V_{\text {D }}\) & Supply Voltage & 4.50 & 5.50 & V \\
\hline \(\mathrm{T}_{\text {AMB }}\) & A mbient Operating T emperature & 0 & +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

See "Environmental Conditions" for information on thermal specifications.

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter} & Test Conditions & Min & Max & Unit \\
\hline \(\mathrm{V}_{\text {IH }}\) & Hi-Level Input Voltage \({ }^{3,5}\) & @ \(\mathrm{V}_{\mathrm{DD}}=\) max & 2.0 & & V \\
\hline \(V_{\text {IH }}\) & Hi-Level CLKIN Voltage & @ \(V_{\text {DD }}=\) max & 2.2 & & V \\
\hline \(V_{\text {IL }}\) & Lo-Level Input Voltage \({ }^{\text {1, }} 3\) & \(@ V_{D D}=\) min & & 0.8 & V \\
\hline \(\mathrm{V}_{\text {OH }}\) & Hi-L evel Output Voltage \({ }^{2,3,7}\) & \begin{tabular}{l}
\(@ V_{D D}=\mathrm{min}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}\) \\
@ \(V_{D D}=m i n, I_{\text {OH }}=-100 \mu A^{8}\)
\end{tabular} & \[
\begin{aligned}
& 2.4 \\
& V_{D D}-0.3
\end{aligned}
\] & & V \\
\hline VoL & Lo-Level Output Voltage \({ }^{2,3,7}\) & \(@ V_{\text {DD }}=\mathrm{min}, \mathrm{I}_{\text {OL }}=2 \mathrm{~mA}\) & & 0.4 & V \\
\hline \(I_{\text {IH }}\) & Hi -L evel Input Current \({ }^{1}\) & \(@ V_{D D}=\max , \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}\) max & & 10 & \(\mu \mathrm{A}\) \\
\hline \(1 / 1\) & Lo-Level Input Current \({ }^{1}\) & \(@ \mathrm{~V}_{\text {DD }}=m a x, \mathrm{~V}_{1 \mathrm{I}}=0 \mathrm{~V}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline 1 OzH & T hree-State Leakage Current \({ }^{4}\) & @ \(\mathrm{V}_{\text {DD }}=\mathrm{max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }} \mathrm{max}^{6}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{l}_{\text {ozl }}\) & T hree-State Leakage Current \({ }^{4}\) & \(@ V_{\text {DD }}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}^{6}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & Input Pin C apacitance \({ }^{1,8,9}\) & \(@ \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {IN }}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}\) & & 8 & pF \\
\hline \(\mathrm{C}_{0}\) & Output Pin C apacitance \({ }^{4,8,9,10}\) & \(@ \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {IN }}=1.0 \mathrm{MHz}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}\) & & 8 & pF \\
\hline
\end{tabular}

\section*{NOTES}

\({ }^{2}\) Output pins: \(\overline{\mathrm{BG}}, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0-\mathrm{A} 13, \mathrm{CLK} \mathrm{OUT} ,\mathrm{DT} \mathrm{1} DT 0.\),
\({ }^{3}\) Bidirectional pins: D 0-D 23, SCLK 1, RFS1, TFS1, SCLK 0, RF S0, TFSO
\({ }^{4}\) T hree-state pins: A0-A13, D0-D 23, \(\overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{DT} 1\), SCLK 1, RSF 1, TFS1, DT \(0, ~ S C L K 0, ~ R F S 0, ~ T F S 0 . ~\)
\({ }^{5}\) Input-only pins: \(\overline{\mathrm{RESET}}, \overline{\mathrm{IRQ} 2}, \overline{\mathrm{BR}}, \mathrm{M} \mathrm{M} \mathrm{AP}, \mathrm{DR1}, \mathrm{DR0}\).
\({ }^{6} 0 \mathrm{~V}\) on \(\overline{\mathrm{BR}}, \mathrm{CLK}\) IN Active (to force three-state condition).
\({ }^{7}\) Although specified for TTL outputs, all AD SP-2104/AD SP-2109 outputs are CM OS-compatible and will drive to \(V_{D D}\) and GND, assuming no dc loads.
\({ }^{8} \mathrm{G}\) uaranteed but not tested.
\({ }^{9}\) Applies to PGA, PLCC, PQFP package types.
\({ }^{10}\) Output pin capacitance is the capacitive load for any three-stated output pin.
Specifications subject to change without notice.

\section*{ABSOLUTE MAXIMUM RATINGS*}

*Stresses greater than those listed above may cause permanent damage to the device. Thesearestress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{CAUTION}

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADSP-2104/AD SP-2109 processor features proprietary ESD protection circuitry to dissipate high energy electrostatic discharges (H uman Body M odel), permanent damage may occur to devices subjected to such discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. U nused devices must be stored in conductive foam or shunts, and the foam should be discharged to the destination socket before the devices are
 removed. Per method 3015 of MIL-ST D-883, the AD SP-2104/AD SP-2109 processor has been classified as Class 1 device.

\section*{SPECIFICATIONS (ADSP-2104/ADSP-2109)}

\section*{SUPPLY CURRENT \& POWER}
\begin{tabular}{l|l|l|l}
\hline Parameter & Test Conditions & Min & Max \\
\hline\(I_{D D} \quad\) Supply Current (D ynamic) \\
& & \(@ V_{D D}=\max , \mathrm{t}_{\mathrm{CK}}=50 \mathrm{~ns}^{2}\) & \\
\(\mathrm{I}_{\mathrm{DD}} \quad\) Supply Current (Idle) \()^{1,3}\) & \(@ V_{D D}=\max , \mathrm{t}_{\mathrm{CK}}=72.3 \mathrm{~ns}^{2}\) & 31 & mA \\
& \(@ V_{D D}=\max , \mathrm{t}_{C K}=50 \mathrm{~ns}\) & 24 & mA \\
\hline
\end{tabular}

\section*{NOTES}
\({ }^{1}\) Current reflects device operating with no output loads.
\({ }^{2} \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}\) and 2.4 V .
\({ }^{3}\) Idle refers to ADSP-2104/AD SP-2109 state of operation during execution of IDLE instruction. D easserted pins are driven to either \(V_{D D}\) or GND.
For typical supply current (internal power dissipation) figures, see Figure 7.

1 POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.
2 IDLE REFERS TO ADSP-2104/ADSP-2109 OPERATION DURING EXECUTION OF IDLE INSTRUCTION. DEASSERTED PINS ARE DRIVEN TO EITHER VDD OR GND.
3 MAXIMUM POWER DISSIPATION AT VD \(=5.5 \mathrm{~V}\) DURING EXECUTION OF IDLE \(n\) INSTRUCTION

Figure 7. ADSP-2104/ADSP-2109 Power (Typical) vs. Frequency

\section*{ADSP-2104/ADSP-2109}

\section*{SPECIFICATIONS (ADSP-2104/ADSP-2109)}

\section*{POWER DISSIPATION EXAMPLE}

To determine total power dissipation in a specific application, the following equation should be applied for each output:
\[
C \times V_{D D}^{2} \times f
\]
\(C=\) load capacitance, \(f=\) output switching frequency.

\section*{Example:}

In an AD SP-2104 application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:
A ssumptions:
- External data memory is accessed every cycle with \(50 \%\) of the address pins switching.
- External data memory writes occur every other cycle with \(50 \%\) of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at \(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\) and \(\mathrm{t}_{\mathrm{CK}}=50 \mathrm{~ns}\).
\[
\text { Total Power Dissipation }=P_{I N T}+\left(C \times V_{D D}{ }^{2} \times f\right)
\]
\(P_{\text {INT }}=\) internal power dissipation (from Figure 7).
(\(C \times V_{D D}{ }^{2} \times f\)) is calculated for each output:
\begin{tabular}{l|l|l|l|l}
\hline Output & \begin{tabular}{l}
\# of \\
Pins
\end{tabular} & \(\times \mathbf{C}\) & \(\times \mathbf{V}_{\mathbf{D D}} \mathbf{2} \times \mathbf{f}\) \\
\hline Address, \(\overline{\mathrm{DMS}}\) & 8 & \(\times 10 \mathrm{pF}\) & \(\times 5^{2} \mathrm{~V}\) & \(\times 20 \mathrm{M} \mathrm{Hz}=40.0 \mathrm{~mW}\) \\
D ata, \(\overline{\mathrm{WR}}\) & 9 & \(\times 10 \mathrm{pF}\) & \(\times 5^{2} \mathrm{~V}\) & \(\times 10 \mathrm{M} \mathrm{Hz}=22.5 \mathrm{~mW}\) \\
\(\overline{\mathrm{RD}}\) & 1 & \(\times 10 \mathrm{pF}\) & \(\times 5^{2} \mathrm{~V}\) & \(\times 10 \mathrm{M} \mathrm{Hz}=2.5 \mathrm{~mW}\) \\
CLKOUT & 1 & \(\times 10 \mathrm{pF}\) & \(\times 5^{2} \mathrm{~V}\) & \(\times 20 \mathrm{M} \mathrm{Hz}=5.0 \mathrm{~mW}\) \\
\hline
\end{tabular}

T otal power dissipation for this example \(=P_{\text {INT }}+70.0 \mathrm{~mW}\).

\section*{ENVIRONMENTAL CONDITIONS}

Ambient Temperature R ating:
\(T_{A M B}=T_{C A S E}-\left(P D \times \theta_{C A}\right)\)
\(\mathrm{T}_{\text {CASE }}=\mathrm{C}\) ase T emperature in \({ }^{\circ} \mathrm{C}\)
PD = Power Dissipation in W
\(\theta_{C A}=\) Thermal Resistance (Case-to-Ambient)
\(\theta_{\mathrm{JA}}=\mathrm{T}\) hermal R esistance (Junction-to-Ambient)
\(\theta_{\mathrm{Jc}}=\) Thermal Resistance (Junction-to-C ase)
\begin{tabular}{l|l|l|l}
\hline Package & \(\boldsymbol{\theta}_{\mathbf{J A}}\) & \(\boldsymbol{\theta}_{\mathbf{J C}}\) & \(\boldsymbol{\theta}_{\mathbf{C A}}\) \\
\hline PLCC & \(27^{\circ} \mathrm{C} / \mathrm{W}\) & \(16^{\circ} \mathrm{C} / \mathrm{W}\) & \(11^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\section*{CAPACITIVE LOADING}

Figures 8 and 9 show capacitive loading characteristics.

Figure 8. Typical Output Rise Time vs. Load Capacitance, \(C_{L}\) (at Maximum Ambient Operating Temperature)

Figure 9. Typical Output Valid Delay or Hold vs. Load Capacitance, \(C_{L}\) (at Maximum Ambient Operating Temperature)

\section*{SPECIFICATIONS (ADSP-2104/ADSP-2109)}

\section*{TEST CONDITIONS}

Figure 10 shows voltage reference levels for ac measurements.

Figure 10. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

\section*{Output Disable Time}

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time (\(\mathrm{t}_{\text {DIS }}\)) is the difference of \(\mathrm{t}_{\text {measured }}\) and \(t_{\text {Decay }}\), as shown in Figure 11. The time \(t_{\text {measured }}\) is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, \(t_{\text {DECAY }}\), is dependent on the capacitative load, \(C_{L}\), and the current load, \(i_{L}\), on the output pin. It can be approximated by the following equation:
\[
t_{D E C A Y}=\frac{C_{L} \times 0.5 \mathrm{~V}}{i_{L}}
\]
from which
\[
t_{D I S}=t_{\text {MEASURED }}-t_{D E C A Y}
\]
is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

\section*{Output Enable Time}

O utput pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time (\(\mathrm{t}_{\mathrm{ENA}}\)) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 11. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Figure 11. Output Enable/Disable

Figure 12. Equivalent Device Loading for AC Measurements (Except Output Enable/Disable)

\section*{ADSP-2104L/ADSP-2109L-SPECIFICATIONS}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{ll|cc|c}
\hline Parameter & \multicolumn{2}{|c|}{ K Grade } & Min & Max
\end{tabular}

See "Environmental Conditions" for information on thermal specifications.

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter} & Test Conditions & Min & Max & Unit \\
\hline \(V_{\text {IH }}\) & Hi-L evel Input Voltage \({ }^{1,3}\) & @ \(\mathrm{V}_{\text {DD }}=\max\) & 2.0 & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Lo-L evel Input Voltage \({ }^{1,3}\) & @ \(V_{D D}=\min\) & & 0.4 & V \\
\hline \(\mathrm{V}_{\text {OH }}\) & Hi-L evel Output Voltage \({ }^{2,3,6}\) & @ \(V_{\text {DD }}=\mathrm{min}, \mathrm{I}_{O H}=-0.5 \mathrm{~mA}{ }^{6}\) & 2.4 & & V \\
\hline \(\mathrm{V}_{\text {OL }}\) & Lo-Level Output Voltage \({ }^{\text {2, 3,6 }}\) & @ \(V_{D D}=\min , \mathrm{I}_{\mathrm{LL}}=2 \mathrm{~mA}^{6}\) & & 0.4 & V \\
\hline \(\mathrm{I}_{\text {IH }}\) & Hi-L evel Input Current \({ }^{1}\) & @ \(\mathrm{V}_{\text {DD }}=\mathrm{max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }} \max\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {IL }}\) & Lo-Level Input C urrent \({ }^{1}\) & @ \(\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline 1 OzH & T hree-State L eakage C urrent \({ }^{4}\) & @ \(V_{\text {DD }}=\max , \mathrm{V}_{I N}=\mathrm{V}_{\text {DD }} \max ^{5}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline Iozl & T hree-State L eakage C urrent \({ }^{4}\) & @ \(\mathrm{V}_{\text {DD }}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}^{5}\) & & 10 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{C}_{1}\) & Input Pin C apacitance \({ }^{1,7,8}\) & \(@ V_{I N}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}\) & & 8 & pF \\
\hline \(\mathrm{C}_{0}\) & Output Pin Capacitance \({ }^{4,7,8,9}\) & \(@ \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {IN }}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}\) & & 8 & pF \\
\hline
\end{tabular}

NOTES
\({ }^{1}\) Input-only pins: CLKIN, \(\overline{\text { RESET }}, \overline{\mathrm{IRQ}} 2, \overline{\mathrm{BR}}, \mathrm{MMAP}, \mathrm{DR} 1, \mathrm{DR} 0\).
\({ }^{2}\) Output pins: \(\overline{\mathrm{BG}}, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0-\mathrm{A} 13\), CLKOUT, DT1, DT0.
\({ }^{3}\) Bidirectional pins: D0-D23, SCLK1, RFS1, TFS1, SCLK0, RFS0, TFS0.
\({ }^{4}\) Three-stateable pins: A0-A13, D0-D23, \(\overline{\text { PMS }}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{DT} 1\), SCLK1, RSF1, TFS1, DT0, SCLK0, RFS0, TFS0.
\({ }^{5} 0 \mathrm{~V}\) on \(\overline{\mathrm{BR}}\), CLKIN Active (to force three-state condition).
\({ }^{6}\) All outputs are CMOS and will drive to \(\mathrm{V}_{\mathrm{DD}}\) and GND with no dc loads.
\({ }^{7}\) Guaranteed but not tested.
\({ }^{8}\) Applies to PLCC package type.
\({ }^{9}\) Output pin capacitance is the capacitive load for any three-stated output pin.
Specifications subject to change without notice.

\section*{ABSOLUTE MAXIMUM RATINGS*}

Supply Voltage . -0.3 V to +4.5 V

Output Voltage Swing \(\ldots \ldots \ldots . .\).
O perating T emperature Range (Ambient)-40 \({ }^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature Range \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (5 sec) PLCC \(+280^{\circ} \mathrm{C}\)
*Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{SPECIFICATIONS (ADSP-2104L/ADSP-2109L) \\ SUPPLY CURRENT \& POWER (ADSP-2104L/ADSP-2109L)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter} & Test Conditions & Min & Max & Unit \\
\hline \(I_{\text {D }}\) & Supply Current (D ynamic) \({ }^{1}\) & \(@ \mathrm{~V}_{\mathrm{DD}}=\max , \mathrm{t}_{\mathrm{CK}}=72.3 \mathrm{~ns}^{2}\) & & 14 & mA \\
\hline \(I_{\text {DD }}\) & Supply Current (Idle) \({ }^{1,3}\) & @ \(\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{t}_{\mathrm{CK}}=72.3 \mathrm{~ns}\) & & 4 & mA \\
\hline
\end{tabular}

\section*{NOTES}
\({ }^{1}\) Current reflects device operating with no output loads.
\({ }^{2} \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}\) and 2.4 V .
\({ }^{3}\) Id de refers to ADSP-2104L/ADSP-2109L state of operation during execution of IDLE instruction. Deasserted pins are driven to either \(V_{D D}\) or GND. For typical supply current (internal power dissipation) figures, see Figure 13.

\({ }^{1}\) POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.
2 IDLE REFERS TO ADSP-2104L/ADSP-2109L OPERATION DURING EXECUTION OF IDLE INSTRUCTION. DEASSERTED PINS ARE DRIVEN TO EITHER VDD OR GND.
3 MAXIMUM POWER DISSIPATION AT \(V_{D D}=3.6 V\) DURING EXECUTION OF IDLE \(n\) INSTRUCTION.

Figure 13. ADSP-2104L/ADSP-2109L Power (Typical) vs. Frequency

\section*{ADSP-2104/ADSP-2109}

\section*{SPECIFICATIONS (ADSP-2104L/ADSP-2109L)}

\section*{POWER DISSIPATION EXAMPLE}

T o determine total power dissipation in a specific application, the following equation should be applied for each output:
\[
C \times V_{D D}{ }^{2} \times f
\]
\(C=\) load capacitance, \(f=\) output switching frequency.

\section*{Example:}

In an ADSP-2104L application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:
A ssumptions:
- External data memory is accessed every cycle with \(50 \%\) of the address pins switching.
- External data memory writes occur every other cycle with \(50 \%\) of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at \(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}\) and \(\mathrm{t}_{\mathrm{CK}}=100 \mathrm{~ns}\).
\[
\text { Total Power Dissipation }=P_{I N T}+\left(C \times V_{D D}^{2} \times f\right)
\]
\(\mathrm{P}_{\text {INT }}=\) internal power dissipation (from Figure 13).
(\(\mathrm{C} \times \mathrm{V}_{\mathrm{DD}}{ }^{2} \times \mathrm{f}\)) is calculated for each output:
\begin{tabular}{l|l|l|l|l}
\hline Output & \begin{tabular}{l}
\# of \\
Pins
\end{tabular} & \(\times \mathbf{C}\) & \(\times \mathbf{V}_{\mathbf{D D}} \mathbf{2}^{2}\) & \(\times \mathbf{f}\) \\
\hline Address, \(\overline{\mathrm{DMS}}\) & 8 & \(\times 10 \mathrm{pF}\) & \(\times 3.3^{2} \mathrm{~V}\) & \(\times 10 \mathrm{M} \mathrm{Hz}=8.71 \mathrm{~mW}\) \\
D ata, \(\overline{\mathrm{WR}}\) & 9 & \(\times 10 \mathrm{pF}\) & \(\times 3.3^{2} \mathrm{~V}\) & \(\times 5 \mathrm{M} \mathrm{Hz}=4.90 \mathrm{~mW}\) \\
\(\overline{\mathrm{RD}}\) & 1 & \(\times 10 \mathrm{pF}\) & \(\times 3.3^{2} \mathrm{~V}\) & \(\times 5 \mathrm{M} \mathrm{Hz}=0.55 \mathrm{~mW}\) \\
CLK OUT & 1 & \(\times 10 \mathrm{pF}\) & \(\times 3.3^{2} \mathrm{~V}\) & \(\times 10 \mathrm{M} \mathrm{Hz}=1.09 \mathrm{~mW}\) \\
\hline \multicolumn{6}{|r}{15.25 mWW}
\end{tabular}

T otal power dissipation for this example \(=\mathrm{P}_{\mathrm{INT}}+15.25 \mathrm{~mW}\).

\section*{ENVIRONMENTAL CONDITIONS}

Ambient Temperature Rating:
\(T_{A M B}=T_{C A S E}-\left(P D \times \theta_{C A}\right)\)
\(\mathrm{T}_{\text {CASE }}=\mathrm{C}\) ase T emperature in \({ }^{\circ} \mathrm{C}\)
PD = Power Dissipation in W
\(\theta_{C A}=T\) hermal Resistance (C ase-to-A mbient)
\(\theta_{\mathrm{JA}}=T\) hermal Resistance (Junction-to-Ambient)
\(\theta_{\mathrm{Jc}}=\) Thermal Resistance (Junction-to-C ase)
\begin{tabular}{l|l|l|l}
\hline Package & \(\boldsymbol{\theta}_{\mathbf{J A}}\) & \(\boldsymbol{\theta}_{\mathbf{J C}}\) & \(\boldsymbol{\theta}_{\mathbf{C A}}\) \\
\hline PLCC & \(27^{\circ} \mathrm{C} / \mathrm{W}\) & \(16^{\circ} \mathrm{C} / \mathrm{W}\) & \(11^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline
\end{tabular}

\section*{CAPACITIVE LOADING}

Figures 14 and 15 show capacitive loading characteristics.

Figure 14. Typical Output Rise Time vs. Load Capacitance, \(C_{L}\) (at Maximum Ambient Operating Temperature)

Figure 15. Typical Output Valid Delay or Hold vs. Load Capacitance, \(C_{L}\) (at Maximum Ambient Operating Temperature)

\section*{SPECIFICATIONS (ADSP-2104L/ADSP-2109L)}

\section*{TEST CONDITIONS}

Figure 16 shows voltage reference levels for ac measurements.

Figure 16. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

\section*{Output Disable Time}

O utput pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. T he output disable time (\(\mathrm{t}_{\text {DIS }}\)) is the difference of \(\mathrm{t}_{\text {MEASURED }}\) and \(t_{\text {DECAY }}\), as shown in Figure 17. The time \(t_{\text {measured }}\) is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, \(t_{\text {DECAY }}\), is dependent on the capacitative load, \(C_{L}\), and the current load, \(i_{L}\), on the output pin. It can be approximated by the following equation:
\[
t_{D E C A Y}=\frac{C_{L} \times 0.5 \mathrm{~V}}{i_{L}}
\]
from which
\[
t_{D I S}=t_{\text {MEASURED }}-t_{\text {DECAY }}
\]
is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

\section*{Output Enable Time}

Output pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time (\(\mathrm{t}_{\mathrm{ENA}}\)) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 17. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Figure 17. Output Enable/Disable

Figure 18. Equivalent Device Loading for AC M easurements (ExceptOutput Enable/Disable)

\section*{ADSP-2104/ADSP-2109}

\section*{TIMING PARAMETERS (ADSP-2104/ADSP-2109)}

\section*{GENERAL NOTES}

U se the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

\section*{TIMING NOTES}

Switching characteristics specify how the processor changes its signals. Y ou have no control over this timing-circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use
switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.
Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

\section*{MEMORY REQUIREMENTS}

T he table below shows common memory device specifications and the corresponding AD SP-2104/AD SP-2109 timing parameters, for your convenience.
\begin{tabular}{|c|c|c|}
\hline Memory Device Specification & \begin{tabular}{l}
ADSP-2104/ADSP-2109 \\
Timing Parameter
\end{tabular} & Timing Parameter Definition \\
\hline Address Setup to Write Start Address Setup to Write End Address Hold Time Data Setup Time Data Hold Time \(\overline{\mathrm{OE}}\) to Data Valid Address Access Time & \(\mathrm{t}_{\text {ASW }}\)
\(\mathrm{t}_{\text {AW }}\)
\(\mathrm{t}_{\mathrm{WRA}}\)
\(\mathrm{t}_{\mathrm{DW}}\)
\(\mathrm{t}_{\mathrm{DH}}\)
\(\mathrm{t}_{\mathrm{RDD}}\)
\(\mathrm{t}_{\mathrm{AA}}\) & \begin{tabular}{l}
A0-A13, \(\overline{\mathrm{DMS}}, \overline{\text { PMS }}\) Setup before \(\overline{\mathrm{WR}}\) Low \\
A0-A13, DMS, \(\overline{\text { PMS }}\) Setup before WR Deasserted \\
A0-A13, DMS,\(\overline{\text { PMS }}\) Hold after \(\overline{\mathrm{WR}}\) Deasserted \\
Data Setup before WR High \\
Data Hold after WR High \\
\(\overline{\mathrm{RD}}\) Low to Data Valid \\
A0-A13, \(\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}\) to Data Valid
\end{tabular} \\
\hline
\end{tabular}

\section*{TIMING PARAMETERS (ADSP-2104/ADSP-2109)}

\section*{clock signals \& RESET}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|c|}{20 MHz} & \multicolumn{2}{|c|}{Frequency Dependency} & \multirow[b]{2}{*}{Unit} \\
\hline & Min & Max & Min & Max & \\
\hline \multicolumn{6}{|l|}{Timing R equirement:} \\
\hline \(\mathrm{t}_{\mathrm{CK}} \quad\) CLKIN Period & 50 & 150 & & & ns \\
\hline \(\mathrm{t}_{\text {CKL }} \quad\) CLKIN Width Low & 20 & & 20 & & ns \\
\hline \(\mathrm{t}_{\text {CKH }} \quad\) CLKIN Width High & 20 & & 20 & & ns \\
\hline trsp \(\quad\) RESET Width Low & 250 & & \(5 t_{C K}{ }^{1}\) & & ns \\
\hline \multicolumn{6}{|l|}{Switching C haracteristic:} \\
\hline \(\mathrm{t}_{\text {cPL }}\) CLKOUT Width Low & 15 & & \(0.5 \mathrm{t}_{\mathrm{CK}}-10\) & & ns \\
\hline \(\mathrm{t}_{\text {CPH }} \quad\) CLKOUT Width High & 15 & & \(0.5 \mathrm{t}_{\mathrm{CK}}-10\) & & ns \\
\hline \(\mathrm{t}_{\text {Скон }} \quad\) CLKIN High to CLKOUT High & 0 & 20 & & & ns \\
\hline
\end{tabular}

\section*{NOTE}
\({ }^{1}\) Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles, assuming stable CLKIN (not including crystal oscillator startup time).

Figure 19. Clock Signals

TIMING PARAMETERS (ADSP-2104/ADSP-2109)

\section*{INTERRUPTS \& FLAGS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|c|}{20 MHz} & \multicolumn{2}{|c|}{Frequency Dependency} & \multirow[b]{2}{*}{Unit} \\
\hline & Min & Max & Min & Max & \\
\hline \multicolumn{6}{|l|}{Timing Requirement:} \\
\hline \(\mathrm{t}_{\mathrm{IFS}} \quad \overline{\mathrm{IRQx}}^{1}\) or FI Setup before & 27.5 & & \(0.25 \mathrm{t}_{\mathrm{CK}}\) & & ns \\
\hline CLKOUT Low \({ }^{2,3}\) & & & & & \\
\hline \(\mathrm{t}_{\mathrm{FFH}} \quad \overline{\mathrm{IRQx}}^{1}\) or FI Hold after CLK OUT & 12.5 & & \(0.25 \mathrm{t}_{\mathrm{CK}}\) & & ns \\
\hline High \({ }^{2,3}\) & & & & & \\
\hline \multicolumn{6}{|l|}{Switching C haracteristic:} \\
\hline \(\mathrm{t}_{\mathrm{FOH}} \quad\) FO Hold after CLKOUT High & 0 & & 0 & & ns \\
\hline \(\mathrm{t}_{\text {FOD }} \quad\) FO Delay from CLKOUT High & & 15 & & & ns \\
\hline
\end{tabular}

\section*{NOTES}
\({ }^{1} \overline{\mathrm{IRQx}}=\overline{\mathrm{IRQ} 0}, \overline{\mathrm{IRQ}} 1\), and \(\overline{\mathrm{IRQ}}\).
\({ }^{2}\) If \(\overline{\text { IRQx }}\) and FI inputs meet \(\mathrm{t}_{\mathrm{IFS}}\) and \(\mathrm{t}_{\mathrm{IFH}}\) setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the following cycle. (Refer to the "Interrupt Controller" section in Chapter 3, Program Control, of the ADSP-2100 Family U ser's M anual for further information on interrupt servicing.)
\({ }^{3}\) E dge-sensitive interrupts require pulse widths greater than 10 ns . Level-sensitive interrupts must be held low until serviced.

Figure 20. Interrupts \& Flags

\section*{TIMING PARAMETERS (ADSP-2104/ADSP-2109)}

BUS REQUEST/GRANT
\begin{tabular}{ll|l|l|l}
\hline & & & \begin{tabular}{c}
Frequency \\
Dependency
\end{tabular} \\
Parameter & \(\mathbf{2 0 M H z}\) & Min & Max & Min
\end{tabular}

NOTES
\({ }^{1}\) If \(\overline{\mathrm{BR}}\) meets the \(\mathrm{t}_{\mathrm{BS}}\) and \(\mathrm{t}_{\mathrm{BH}}\) setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle. \(\overline{\mathrm{BR}}\) requires
a pulse width greater than 10 ns .
Note: \(\overline{\mathrm{BG}}\) is asserted in the cycle after \(\overline{\mathrm{BR}}\) is recognized. No external synchronization circuit is needed when \(\overline{\mathrm{BR}}\) is generated as an asynchronous signal.

Figure 21. Bus Request/Grant

\section*{ADSP-2104/ADSP-2109}

TIMING PARAMETERS (ADSP-2104/ADSP-2109)
MEMORY READ
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|c|}{20 MHz} & \multirow[b]{2}{*}{Unit} \\
\hline & Min & Max & \\
\hline \multicolumn{4}{|l|}{T iming Requirement:} \\
\hline \(\mathrm{t}_{\mathrm{RDD}} \quad \overline{\mathrm{RD}}\) Low to Data Valid & & 12 & ns \\
\hline \(\mathrm{t}_{\mathrm{AA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\text { PMS }}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}\) to Data Valid & & 19.5 & ns \\
\hline \(t_{\text {RDH }} \quad\) Data Hold from \(\overline{\mathrm{RD}}\) High & 0 & & \\
\hline \multicolumn{4}{|l|}{Switching Characteristic:} \\
\hline \(\mathrm{t}_{\mathrm{RP}} \quad \overline{\mathrm{RD}}\) Pulse Width & 17 & & ns \\
\hline \(\mathrm{t}_{\text {CRD }}\) CLKOUT High to \(\overline{\mathrm{RD}}\) Low & 7.5 & 22.5 & ns \\
\hline \(t_{\text {ASR }} \quad \begin{aligned} & \text { A0-A13, } \\ & \overline{R D} \text { Low }\end{aligned}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}\) Setup before & 2.5 & & ns \\
\hline \(\begin{array}{ll}\mathrm{t}_{\mathrm{RDA}} & \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}} \text { Hold after } \overline{\mathrm{RD}} \\ \text { Deasserted }\end{array}\) & 3.5 & & ns \\
\hline \(\mathrm{t}_{\mathrm{RWR}} \quad \overline{\mathrm{RD}}\) High to \(\overline{\mathrm{RD}}\) or \(\overline{\mathrm{WR}}\) Low & 20 & & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|c|}{Frequency Dependency (CLKIN \(\leq \mathbf{2 0} \mathbf{M H z}\))} & \multirow[b]{2}{*}{Unit} \\
\hline & Min & Max & \\
\hline \multicolumn{4}{|l|}{Timing Requirement:} \\
\hline \(t_{\text {RDD }} \overline{\mathrm{RD}}\) Low to Data Valid & & \(0.5 \mathrm{t}_{\mathrm{CK}}-13+\mathrm{w}\) & ns \\
\hline \(\mathrm{t}_{\text {AA }} \quad \mathrm{A} 0-\mathrm{Al3}, \mathrm{PMS}, \mathrm{DMS}\), \(\overline{\mathrm{BMS}}\) to Data Valid & & \(0.75 \mathrm{t}_{\mathrm{CK}}-18+\mathrm{w}\) & ns \\
\hline \(\mathrm{t}_{\text {RDH }}\) Data Hold from \(\overline{\mathrm{RD}}\) High & 0 & & \\
\hline \multicolumn{4}{|l|}{Switching C haracteristic:} \\
\hline \(\mathrm{t}_{\mathrm{RP}}\) RD Pulse Width & & & ns \\
\hline \(\mathrm{t}_{\text {CRD }}\) CLKOUT High to \(\overline{\mathrm{RD}}\) Low & & \(0.25 \mathrm{t}_{\mathrm{CK}}+10\) & ns \\
\hline \(\mathrm{t}_{\text {ASR }} \quad \mathrm{A} 0-\mathrm{Al3}, \overline{\text { PMS }}\), \(\overline{\mathrm{DMS}}\), BMS Setup before & & & \\
\hline RD Low & 0.25 & & ns \\
\hline \(\mathrm{t}_{\mathrm{RDA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}\) Hold after \(\overline{\mathrm{RD}}\) & & & \\
\hline Deasserted & & & ns \\
\hline \(\mathrm{t}_{\text {RWR }} \overline{\mathrm{RD}}\) High to \(\overline{\mathrm{RD}}\) or \(\overline{\mathrm{WR}}\) Low & 0.5 t & & ns \\
\hline
\end{tabular}

Figure 22. Memory Read

\section*{TIMING PARAMETERS (ADSP-2104/ADSP-2109)}

MEMORY WRITE
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|c|}{20 MHz} & \multirow[b]{2}{*}{Unit} \\
\hline & Min & Max & \\
\hline \multicolumn{4}{|l|}{Switching C haracteristic:} \\
\hline \(\mathrm{t}_{\text {DW }} \quad\) Data Setup before \(\overline{\mathrm{WR}}\) High & 12 & & ns \\
\hline \(\mathrm{t}_{\mathrm{DH}} \quad\) Data Hold after \(\overline{\mathrm{WR}}\) High & 2.5 & & ns \\
\hline \(\mathrm{t}_{\mathrm{WP}} \quad \overline{\mathrm{WR}}\) Pulse Width & 17 & & ns \\
\hline \(\mathrm{t}_{\text {WDE }} \quad \overline{\mathrm{WR}}\) Low to Data Enabled & 0 & & ns \\
\hline \(t_{\text {taw }} \quad \begin{aligned} & \text { A0-A13, } \overline{\mathrm{DMS}}, \overline{\mathrm{PMS}} \text { Setup before } \\ & \overline{\mathrm{WR}} \text { Low }\end{aligned}\) & 2.5 & & ns \\
\hline \(\mathrm{t}_{\mathrm{DDR}} \quad\) Data Disable before \(\overline{\mathrm{WR}}\) or \(\overline{\mathrm{RD}}\) Low & 2.5 & & ns \\
\hline \(\mathrm{t}_{\text {CWR }}\) CLKOUT High to WR Low & 7.5 & 22.5 & ns \\
\hline \(\mathrm{t}_{\mathrm{AW}} \quad \begin{aligned} & \text { A0-A13, DMS, } \\ & \text { Deasserted }\end{aligned}\) & 15.5 & & ns \\
\hline \begin{tabular}{l}
twra \(\begin{aligned} & \text { A0-A13, } \overline{\mathrm{DMS}}, \overline{\mathrm{PMS}} \text { Hold after } \overline{\mathrm{WR}} . \\ & \text { Deasserted }\end{aligned}\) \\
Deasserted
\end{tabular} & 3.5 & & ns \\
\hline \(\mathrm{t}_{\text {wwr }} \quad \overline{\mathrm{WR}}\) High to \(\overline{\mathrm{RD}}\) or \(\overline{\mathrm{WR}}\) Low & 20 & & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|l|}{Frequency Dependency (CLKIN \(\leq \mathbf{2 0} \mathbf{~ M H z}\))} & \multirow[b]{2}{*}{Unit} \\
\hline & Min & Max & \\
\hline \multicolumn{4}{|l|}{Switching Characteristic:} \\
\hline \(\mathrm{t}_{\text {Dw }} \quad\) Data Setup before WR High & \(0.5 \mathrm{t}_{\mathrm{CK}}-13+\mathrm{w}\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{DH}} \quad\) Data Hold after \(\overline{\mathrm{WR}}\) High & \(0.25 \mathrm{t}_{\mathrm{CK}}-10\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{WP}}\) WR Pulse Width & \(0.5 \mathrm{t}_{\mathrm{CK}}-8+\mathrm{w}\) & & ns \\
\hline \(\mathrm{t}_{\text {WDE }} \overline{\mathrm{WR}}\) Low to Data Enabled & & & \\
\hline \(\mathrm{t}_{\text {ASW }}\) A0-A13, \(\overline{\mathrm{DMS}}\), \(\overline{\text { PMS Setup before } \overline{\mathrm{WR}} \text { Low }}\) & \(0.25 \mathrm{t}_{\mathrm{CK}}-10\) & & ns \\
\hline \(\mathrm{t}_{\text {DDR }}\) Data Disable before WR or \(\overline{\mathrm{RD}}\) Low & \(0.25 \mathrm{t}_{\mathrm{CK}}-10\) & & ns \\
\hline \(\mathrm{t}_{\text {CWR }}\) CLKOUT High to \(\overline{\mathrm{WR}}\) Low & \(0.25 \mathrm{t}_{\mathrm{CK}}-5\) & \(0.25 \mathrm{t}_{\mathrm{CK}}+10\) & ns \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\text {AW }} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{DMS}}, \overline{\text { PMS }}\), Setup before \(\overline{\mathrm{WR}}\)
Deasserted} & & & \\
\hline & \multicolumn{2}{|l|}{\(0.75 \mathrm{t}_{\mathrm{CK}}-22+\mathrm{w}\)} & ns \\
\hline \multirow[t]{2}{*}{twra

A \(0-A 13, ~ \overline{D M S}, \overline{\text { PMS }}\) Hold after \(\overline{\mathrm{WR}}\)
Deasserted} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(0.25 \mathrm{t}_{\mathrm{CK}}-9\)}} & \\
\hline & & & ns \\
\hline \(\mathrm{t}_{\text {WWWR }} \overline{\mathrm{WR}}\) High to \(\overline{\mathrm{RD}}\) or \(\overline{\mathrm{WR}}\) Low & \(0.5 \mathrm{t}_{\mathrm{CK}}-5\) & & ns \\
\hline
\end{tabular}

Figure 23. Memory Write

\section*{ADSP-2104/ADSP-2109}

TIMING PARAMETERS (ADSP-2104/ADSP-2109)

\section*{SERIAL PORTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|c|}{13.824 MHz*} & \multicolumn{2}{|c|}{Frequency Dependency} & \multirow[b]{2}{*}{Unit} \\
\hline & Min & Max & Min & Max & \\
\hline Timing R equirement: & & & & & \\
\hline \(\mathrm{t}_{\text {sck }}\) SCLK Period & 72.3 & & & & ns \\
\hline \(\mathrm{t}_{\text {scs }} \mathrm{DR} / \mathrm{T} F\) S/RFS Setup before SCLK Low & 8 & & & & ns \\
\hline \(\mathrm{t}_{\text {SCH }} \quad \mathrm{DR} / \mathrm{T} F\) S/RFS H old after SCLK Low & 10 & & & & ns \\
\hline \(\mathrm{t}_{\text {SCP }} \quad\) SCLK \({ }_{\text {IN }}\) Width & 28 & & & & ns \\
\hline Switching Characteristic: & & & & & \\
\hline \(\mathrm{t}_{\text {cc }} \quad\) CLKOUT High to SCLK \({ }_{\text {out }}\) & 18.1 & 33.1 & \(0.25 t_{\text {ck }}\) & \(0.25 t_{C K}+15\) & ns \\
\hline \(\mathrm{t}_{\text {SCDE }}\) SCLK High to DT Enable & 0 & & & & ns \\
\hline tscdv SCLK High to DT Valid & & 20 & & & ns \\
\hline \(t_{\text {RH }} \quad\) TFS/RFS \({ }_{\text {OUT }}\) H old after SCLK High & & & & & ns \\
\hline \(\mathrm{t}_{\text {RD }} \quad\) TFS/RF Sout D elay from SCLK High & & 20 & & & ns \\
\hline \(\mathrm{t}_{\text {SCDH }}\) DT H old after SCLK High & & & & & ns \\
\hline \(\mathrm{t}_{\text {TDE }}\) TFS (Alt) to DT Enable & & & & & ns \\
\hline \(\mathrm{t}_{\text {TDV }}\) TFS (Alt) to DT Valid & & 18 & & & ns \\
\hline \(\mathrm{t}_{\text {SCDD }}\) SCLK High to DT Disable & & 25 & & & ns \\
\hline trDv RFS (M ultichannel, Frame D elay Zero) to DT Valid & & 20 & & & ns \\
\hline
\end{tabular}
*M aximum serial port operating frequency is 13.824 M Hz .

Figure 24. Serial Ports

\section*{TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)}

\section*{GENERAL NOTES}
\(U\) se the exact timing information given. D o not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. C onsequently, you cannot meaningfully add parameters to derive longer times.

\section*{TIMING NOTES}

Switching characteristics specify how the processor changes its signals. Y ou have no control over this timing-circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

\section*{MEMORY REQUIREMENTS}

The table below shows common memory device specifications and the corresponding ADSP-2104L/ADSP-2109L timing parameters, for your convenience.
\begin{tabular}{l|l|l}
\hline & & \\
Memory Specification & \begin{tabular}{l}
ADSP-2104L/ADSP-2109L \\
Timing Parameter
\end{tabular} & Timing Parameter Definition \\
\hline Address Setup to Write Start & \(\mathrm{t}_{\mathrm{ASW}}\) & A0-A13, \(\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}\) Setup before \(\overline{\mathrm{WR}}\) Low \\
Address Setup to Write End & \(\mathrm{t}_{\mathrm{AW}}\) & A0-A13, \(\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}} \mathrm{Setup}\) before \(\overline{\mathrm{WR}}\) Deasserted \\
Address Hold Time & \(\mathrm{t}_{\mathrm{WRA}}\) & A0-A13, \(\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}} \mathrm{Hold}\) after WR Deasserted \\
Data Setup Time & \(\mathrm{t}_{\mathrm{DW}}\) & Data Setup before \(\overline{\mathrm{WR}}\) High \\
Data Hold Time & \(\mathrm{t}_{\mathrm{DH}}\) & Data Hold after \(\overline{\mathrm{WR}}\) High \\
\(\overline{\mathrm{OE}}\) to Data Valid & \(\mathrm{t}_{\mathrm{RDD}}\) & \(\overline{\mathrm{RD}}\) Low to Data Valid \\
Address Access Time & \(\mathrm{t}_{\mathrm{AA}}\) & A0-A13, \(\overline{\mathrm{DMS}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}} \text { to Data Valid }}\) \\
\hline
\end{tabular}

TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)

\section*{CLOCK SIGNALS \& RESET}

\section*{NOTE}
\({ }^{1}\) Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal oscillator startup time).

Figure 25. Clock Signals

\section*{TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)}

\section*{INTERRUPTS \& FLAGS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { 13.824 MHz } \\
\text { Min } \quad \text { Max }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Frequency \\
Dependency
\end{tabular}} & Unit \\
\hline T iming R equirement: & & & & & \\
\hline \(\mathrm{t}_{\mathrm{IFS}} \quad \overline{\mathrm{IRQx}}^{1}\) or FI Setup before CLKOUT Low \({ }^{2,3}\) & 33.1 & & \(0.25 \mathrm{t}^{\text {t }}\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{IFH}} \quad \overline{\mathrm{IRQx}}^{1}\) or FI Hold after CLKOUT High \({ }^{2,3}\) & 18.1 & & \(0.25 \mathrm{t}^{\text {t }}\) & & ns \\
\hline Switching Characteristic: & & & & & \\
\hline \(\mathrm{t}_{\mathrm{FOH}} \quad\) FO Hold after CLKOUT High & 0 & & & & ns \\
\hline \(\mathrm{t}_{\text {FOD }} \quad\) FO Delay from CLKOUT High & \multicolumn{2}{|r|}{15} & & & ns \\
\hline
\end{tabular}

NOTES
\({ }^{1} \overline{\mathrm{IRQx}}=\overline{\mathrm{IRQ}} 0, \overline{\mathrm{IRQ}}\), and \(\overline{\mathrm{IRQ} 2}\).
\({ }^{2}\) If IRQx and FI inputs meet \(\mathrm{t}_{\mathrm{IFS}}\) and \(\mathrm{t}_{\mathrm{IFH}}\) setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the following cycle. (Refer to the "Interrupt Controller" section in Chapter 3, Program Control, of the ADSP-2100 Family U ser's M anual for further information on interrupt servicing.)
\({ }^{3}\) Edge-sensitive interrupts require pulse widths greater than 10 ns . Level-sensitive interrupts must be held low until serviced.

Figure 26. Interrupts \& Flags

TMING PARAMETERS (ADSP-2104L/ADSP-2109L)

\section*{BUS REQUEST/GRANT}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 13.824 MHz } \\
& \text { Min Max }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Frequency \\
Dependency
\end{tabular}} & Unit \\
\hline \multicolumn{6}{|l|}{Timing R equirement:} \\
\hline \(\mathrm{t}_{\mathrm{BH}} \quad \overline{\mathrm{BR}}\) Hold after CLKOUT High \({ }^{1}\) & 23.1 & & \(0.25 \mathrm{t}^{\text {c }}\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{BS}} \quad \overline{\mathrm{BR}}\) Setup before CLKOUT Low \({ }^{1}\) & 38.1 & & \(0.25 \mathrm{t}^{\text {c }}\) & & ns \\
\hline \multicolumn{6}{|l|}{Switching C haracteristic:} \\
\hline \(\mathrm{t}_{\text {SD }} \quad\) CLKOUT High to \(\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}\) Disable & & 38.1 & & \(0.25 \mathrm{t}_{\mathrm{CK}}+20\) & ns \\
\hline \(\mathrm{t}_{\text {SDB }} \quad \overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}\) Disable to \(\overline{\mathrm{BG}}\) Low & 0 & & 0 & & ns \\
\hline \(\mathrm{t}_{\text {SE }} \quad \overline{\mathrm{BG}}\) High to \(\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}\) Enable & 0 & & 0 & & ns \\
\hline \(\mathrm{t}_{\text {SEC }} \quad \overline{\mathrm{DMS}}, \overline{\text { PMS }}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}\) Enable to CLKOUT High & 8.1 & & \(0.25 \mathrm{t}^{\text {c }}\) & & ns \\
\hline
\end{tabular}

NOTES
\({ }^{1}\) If \(\overline{\mathrm{BR}}\) meets the \(\mathrm{t}_{\mathrm{BS}}\) and \(\mathrm{t}_{\mathrm{BH}}\) setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle. \(\overline{\mathrm{BR}}\) requires a pulse width greater than 10 ns .

Note: \(\overline{\mathrm{BG}}\) is asserted in the cycle after \(\overline{\mathrm{BR}}\) is recognized. No external synchronization circuit is needed when \(\overline{\mathrm{BR}}\) is generated as an asynchronous signal.

Figure 27. Bus Request/Grant

\section*{TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)}

\section*{MEMORY READ}

\(\mathrm{w}=\) wait states \(\times \mathrm{t}_{\mathrm{ck}}\).

Figure 28. Memory Read

TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)
MEMORY WRITE
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{13.824 MHz} & \multicolumn{2}{|c|}{Frequency Dependency} & Unit \\
\hline \multicolumn{6}{|l|}{Switching Characteristic:} \\
\hline \(\mathrm{t}_{\text {DW }} \quad\) Data Setup before \(\overline{\mathrm{WR}}\) High & 23.2 & & \(0.5 \mathrm{t}_{\mathrm{CK}}\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{DH}} \quad\) Data Hold after WR High & 8.1 & & \(0.25 \mathrm{t}_{\mathrm{C}}\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{WP}} \quad \overline{\text { WR }}\) Pulse Width & 28.2 & & \(0.5 \mathrm{t}_{\mathrm{CK}}\) & & ns \\
\hline \(\mathrm{t}_{\text {WDE }} \quad \overline{\mathrm{WR}}\) Low to Data Enabled & 0 & & & & \\
\hline \(\mathrm{t}_{\text {ASW }}\) A0-A13, \(\overline{\mathrm{DMS}}\), \(\overline{\text { PMS Setup before }} \overline{\mathrm{WR}}\) Low & 8.1 & & \(0.25 \mathrm{t}_{\mathrm{C}}\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{DDR}} \quad\) Data Disable before WR or RD Low & 8.1 & & \(0.25 \mathrm{t}_{\mathrm{C}}\) & & ns \\
\hline \(\mathrm{t}_{\text {CWR }} \quad\) CLKOUT High to WR Low & 13.1 & 28.1 & \(0.25 \mathrm{t}_{\mathrm{C}}\) & \(0.25 \mathrm{t}_{\mathrm{CK}}+10\) & ns \\
\hline \(\mathrm{t}_{\text {AW }} \quad \mathrm{A} 0-\mathrm{Al3}, \mathrm{DMS}\), PMS, Setup before WR Deasserted & 32.2 & & \(0.75 \mathrm{t}_{\mathrm{C}}\) & & ns \\
\hline \(\mathrm{t}_{\mathrm{WRA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{DMS}}, \overline{\text { PMS }}\) Hold After WR Deasserted & 9.1 & & \(0.25 \mathrm{t}_{\mathrm{C}}\) & & ns \\
\hline \(\mathrm{t}_{\text {wwr }} \quad \overline{\mathrm{WR}}\) High to \(\overline{\mathrm{RD}}\) or WR Low & 31.2 & & \(0.5 \mathrm{t}_{\mathrm{CK}}\) & & ns \\
\hline
\end{tabular}
\(w=\) wait states \(\times \mathrm{t}_{\mathrm{ck}}\).

Figure 29. Memory Write

\section*{TIMING PARAMETERS (ADSP-2104L/ADSP-2109L)}

\section*{SERIAL PORTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { 13.824 } \mathrm{MHz}^{\text {Min } \quad \text { Max }}
\end{gathered}
\]} & \multicolumn{2}{|l|}{Frequency Dependency Min Max} & Unit \\
\hline T iming R equirement: & & & & & \\
\hline \(\mathrm{t}_{\text {sck }}\) SCLK Period & 72.3 & & & & ns \\
\hline \(\mathrm{t}_{\text {SCS }} \quad \mathrm{DR} /\) TFS/RFS Setup before SCLK Low & 8 & & & & ns \\
\hline \(\mathrm{t}_{\text {SCH }} \quad \mathrm{DR} /\) TFS/RFS H old after SCLK Low & 10 & & & & ns \\
\hline \(\mathrm{t}_{\mathrm{scp}} \quad \mathrm{SCLK}\) in Width & 28 & & & & ns \\
\hline Switching Characteristic: & & & & & \\
\hline \(\mathrm{t}_{\text {CC }}\) CLKOUT High to SCLK \({ }_{\text {out }}\) & \[
18.1
\] & 33.1 & \(0.25 \mathrm{t}_{\text {ck }}\) & \(0.25 t_{C K}+15\) & ns \\
\hline \(\mathrm{t}_{\text {SCDE }} \quad\) SCLK High to DT Enable & 0 & & & & ns \\
\hline tsCDV SCLK High to DT Valid & & 20 & & & ns \\
\hline \(t_{\text {RH }} \quad\) TFS/RF \({ }_{\text {out }} \mathrm{H}\) old after SCLK High & 0 & & & & ns \\
\hline \(t_{R D} \quad\) TFS/RFS \({ }_{\text {out }}\) D elay from SCLK High & & 20 & & & ns \\
\hline \(\mathrm{t}_{\text {SCDH }} \quad\) DT Hold after SCLK High & 0 & & & & ns \\
\hline \(\mathrm{t}_{\text {TDE }} \quad\) TFS (alt) to DT Enable & 0 & & & & ns \\
\hline \(\mathrm{t}_{\text {TDV }} \quad\) TFS (alt) to DT Valid & & 18 & & & ns \\
\hline \(\mathrm{t}_{\text {SCDD }} \quad\) SCLK High to DT Disable & & 25 & & & ns \\
\hline trdv RFS (M ultichannel, Frame D elay Zero) to DT Valid & & 20 & & & ns \\
\hline
\end{tabular}

Figure 30. Serial Ports

\section*{PIN CONFIGURATIONS}

\section*{68-Lead PLCC}

\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
PLCC \\
Number
\end{tabular} & \begin{tabular}{l}
Pin \\
Name
\end{tabular} \\
\hline 1 & D11 \\
2 & GND \\
3 & D12 \\
4 & D13 \\
5 & D14 \\
6 & D15 \\
7 & D16 \\
8 & D17 \\
9 & D18 \\
10 & GN D \\
11 & D19 \\
12 & D20 \\
13 & D21 \\
14 & D22 \\
15 & D23 \\
16 & VDD \\
17 & M M AP \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
PLCC \\
Number
\end{tabular} & \begin{tabular}{l}
Pin \\
Name
\end{tabular} \\
\hline 18 & \(\overline{\mathrm{BR}}\) \\
19 & \(\overline{\mathrm{IRQ} 2}\) \\
20 & \(\overline{\mathrm{RESET}}\) \\
21 & A0 \\
22 & A1 \\
23 & A 2 \\
24 & A 3 \\
25 & A4 \\
26 & V DD \(^{27}\) \\
27 & A5 \\
28 & A6 \\
29 & GND \\
30 & A7 \\
31 & A8 \\
32 & A9 \\
33 & A10 \\
34 & A11 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
PLCC \\
Number
\end{tabular} & \begin{tabular}{l}
Pin \\
Name
\end{tabular} \\
\hline 35 & A12 \\
36 & \(\overline{A 13}\) \\
37 & \(\overline{\text { PMS }}\) \\
38 & \(\overline{\text { DMS }}\) \\
39 & \(\overline{\text { BMS }}\) \\
40 & \(\overline{\text { BG }}\) \\
41 & XTAL \\
42 & CLKIN \\
43 & CLK OUT \\
44 & \(\overline{\mathrm{WR}}\) \\
45 & \(\overline{\text { RD }}\) \\
46 & DT0 \\
47 & TFS0 \\
48 & RFS0 \\
49 & GND \\
50 & DR0 \\
51 & SCLK0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline PLCC Number & Pin Name \\
\hline 52 & F0 (DT1) \\
\hline 53 & \(\overline{\text { IRQ1 }}\) (TFS1) \\
\hline 54 & \(\overline{\text { IRQ0 }}\) (RFS1) \\
\hline 55 & FI (DR1) \\
\hline 56 & SCLK1 \\
\hline 57 & \(V_{\text {D }}\) \\
\hline 58 & D 0 \\
\hline 59 & D 1 \\
\hline 60 & D2 \\
\hline 61 & D 3 \\
\hline 62 & D 4 \\
\hline 63 & D 5 \\
\hline 64 & D 6 \\
\hline 65 & D 7 \\
\hline 66 & D 8 \\
\hline 67 & D9 \\
\hline 68 & D 10 \\
\hline
\end{tabular}

\section*{OUTLINE DIMENSIONS}

ADSP-2104/ADSP-2109
68-Lead Plastic Leaded Chip Carrier (PLCC)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{3}{|c|}{INCHES} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline & MIN & TYP & MAX & MIN & TYP & MAX \\
\hline A & 0.169 & 0.172 & 0.175 & 4.29 & 4.37 & 4.45 \\
\hline \(\mathrm{A}_{1}\) & & 0.104 & & & 2.64 & \\
\hline b & 0.017 & 0.018 & 0.019 & 0.43 & 0.46 & 0.48 \\
\hline \(\mathrm{b}_{1}\) & 0.027 & 0.028 & 0.029 & 0.69 & 0.71 & 0.74 \\
\hline D & 0.985 & 0.990 & 0.995 & 25.02 & 25.15 & 25.27 \\
\hline \(\mathrm{D}_{1}\) & 0.950 & 0.952 & 0.954 & 24.13 & 24.18 & 24.23 \\
\hline \(\mathrm{D}_{2}\) & 0.895 & 0.910 & 0.925 & 22.73 & 23.11 & 23.50 \\
\hline e & & 0.050 & & & 1.27 & \\
\hline 0 & & & 0.004 & & & 0.10 \\
\hline
\end{tabular}

\section*{ADSP-2104/ADSP-2109}

ORDERING GUIDE
\begin{tabular}{|c|c|c|c|c|}
\hline Part Number* & \begin{tabular}{l}
Ambient \\
Temperature Range
\end{tabular} & Instruction Rate & \begin{tabular}{l}
Package \\
Description
\end{tabular} & Package Option \\
\hline \begin{tabular}{l}
AD SP-2104K P-80 \\
AD SP-2109K P-80
\end{tabular} & \[
\begin{aligned}
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 20.0 \mathrm{M} \mathrm{~Hz} \\
& 20.0 \mathrm{M} \mathrm{~Hz}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 68-L ead PLCC } \\
& \text { 68-L ead PLCC }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P-68A } \\
& \text { P-68A }
\end{aligned}
\] \\
\hline AD SP-2104LK P-55 ADSP-2109LK P-55 & \[
\begin{aligned}
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& 13.824 \mathrm{M} \mathrm{~Hz} \\
& 13.824 \mathrm{M} \mathrm{~Hz}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 68-L ead PLCC } \\
& \text { 68-L ead PLCC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P-68A } \\
& \text { P-68A }
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
*K \(=\) Commercial T emperature R ange \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+70^{\circ} \mathrm{C}\right)\).
\(P=P L C C\) (Plastic Leaded Chip C arrier).
}```

[^0]: NOTES
 ${ }^{1}$ U nused data bus lines may be left floating.
 ${ }^{2} \overline{\mathrm{BR}}$ must be tied high (to V_{DD}) if not used.

